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CLASSIFYING SERIES REALISATIONS FROM ARMA (p, g) PROCESSES

M. KRZYSKO, J. WACHOWIAK

This paper is concerned with discrimination among multivariate autoregressive-moving average
(ARMA) processes with known parameters by the Bayes method. To calculate the value of the Baye-
sian rlsk we need to know the distribution of the discriminant function. Hence, the exact and asym-
ptotic distributions of the discriminant function are investigated.

1. Classification procedure. Let n, i=1, 2,..., &k, denote a class of the r-com-
ponent vector ARMA (p,, ¢,) processes

) ‘;I_A,(u)[X,(t—u)—p,]v: ?Bi(v)e,-(t—z'), t=0, +1, +2,...,

where X(f) are observable random vectors of finite size r=1, p,=E{X(¢)}, the A u)
and Bfv) are r<r matrices of parameters, A, (0)=B,(0)=/, and the e(f) are unob-
servable, independently normally distributed random vectors with E{e(t)} =0, E{eft),
e,(s)}=8,,V, where 3, is Kronecker’s delta function. We assume that V' is positive

definite. This model has r2p, parameters in the A,(u), r’q; in the B,(v), r parameters
in p; and ‘l r(r+1) parameters in V, i=1, 2,...,k

Let I'(n m)= E{(X(m) )X () —w)'} denote the covariance matrix of the pro-
cess {X(t)}. i=1, 2,..., k. Assume that ©,=(A(1),..., A(p), B(1), ..., Blq), nu V),
i=1, 2 , k, are knowu which also lmplles that the Ccovariance matnces Iy(1), To(f),

(t) are known.

Let us assume that we have a realization X=(X(1), X(2),..., X(T)) of a pro-
cess belonging to one of the classes =, my,...,n, We consider k& alternative hypo-
theses H,, H,, ..., H, forming a complete system of disjoint events, i. e. if P,>0,
i=1,2,...,k is the prior probability of the acceptability of hypothesis /7, then
P,+Py+---+P,=1. The hypothesis F, states that X is a realization of a process
belonging to class n;, i=1, 2,..., k Our task is to verify the acceptability of one of
these & alternative hypotheses. In the statistical literature (see, for example, Anderson,
1958, Chapt. 6) this problem is known as classification problem. We will make use of
the Bayesian method “of classification dividing #¥ (N=rT) into non-intersecting clas-
sification regions #,, #,,..., #, defined so as to minimize the Bayesian risk

k
R-1—-X P, [ [(XI©)dX,
=1 " R,

where /(X ©) is the density function of the joint distribution of X in class =,
i=1, 2,...,k The classification region #, minimizing the Bayesian risk is

R, AX: v X)=In(PYP) j=), 2,... k j+i},
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where v,{X) is a discriminant function of the following form z,{.X)=In (f(X|©,)//(X|©))),
i, j=1,2,...,k, j4=i According to the Bayesian method, /7, is accepted if X¢2,
i=1,2,...,k When the hypothesis /4, is true the probability a, of rejecting it is
equal to

4,=1— [ (X1 0)dX=1—P@(X)=In(PyP), k j=1,2,..., k
"?i
j—_f‘:i|G:el)' i:]’ ‘2)--"kn
and the minimum value of the Bayesian risk is
k

k
R= X Pya;=1— T PPOAX)=IN(PP). j=1, 2.,k j+i|©=0).

i=1

The probability «, is very difficult to evaluate in this case because of the very com-
plicated shapes of the classification regions. Analternative way of obtaining an upper
bound for ¢; is given by using the Bonferroni inequality which yields

k
uiS _z‘ P(z'i/(X)<ln (P//Pl))r i= ly 2v vy k,
j=

J+1
and
k k
R= X % PPOAX)<In(P/P)).
B =1

If k=2, then equality holds in the above formulas.
Two equivalent forms of the density function f(X|©,) are available.

1) By the normality of e(f) we have
f(X]0,)=(2r)" "2 G, |- "2 exp{— -; vec' (X—m,)G; ' vec (X—m,)},

where m,=p; 1y, 1,=(, 1,...,1), i=1, 2,... &k, while vec A is a vector formed by
stacking the columns of A, one on top of the other, in order from left to right. The
matrix G, is a block matrix of 72 blocks, where block (m, n) contains the matrix
I,(n—m), i=1, 2, ...,k The matrix I';(n—m) can be expressed by the parameters
of the equation (I).

We will need the following notation:

@ ct)= . B(©)e,(t—)

i) = (e, (), 0,...,0), Y(O=((XO)—w)'. ... (Xi(t=p,+1)—n)),

—A), —AQ2),..., —Ai(p)

A Ly =12,k

Ilip,-—l). 0
In this notation the model (1) has the following form
3) Y()=AY(t—1)+¥(), i=1,2,... k.

Note that X/(¢)—p,+ W'Y () and g(t)= W'¥(£), where W =(/, 0,...,0) is a rXrp,
matrix, /=1, 2,..., & The process Y,(f) of the form (3) has the representation Y(¢)
=X= A4W,(t—u) so that
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X(O)=w+ T WA (t—u)
u=0

or X(t)=w +Xz ,Clu)e(t—u), where C(u)=W AW, i=1,2,...,k
Hence

Nn—m= X X C(u)Ele(m—u)e;(n~0)]C;()

w9 9 ’ ’ s
~3 3 3 CB(VB(s)C(n—m+r—s+u). i=1,2,... k
u=0 r=0 s=0
The spectral decomposition of a matrix A, has the form A,=P, A, Py}, where

A =diag (Miyy Mgy ooy g i=1, 2,0 , k. Hence

(@ Cn—m)= WP, (% H;(j, n—m)PW.
where ”
H: (j, n—m)=(k’, (i j, n—m))= Eo A H, (f) AL-m+ies,
9
H(J)=(huo (i, ]'))-*,2 P Y WB(J)VB; (s)W'(P))T'A;,

=0
. . hyy (i MGy
b, (6 ], ”—m)—'—miv -

The discriminant function v, (X) takes the following form

(5) v,,(,\):--;— [vec’ (X—m;)G; ' vec(X—m,)
—vec’ (X—my) G;! vec(X—my)—In(|Gy|/1 G, )}
where the matrix G, contains the matrices I', (n—m) given by (4), i, J=1,2 ...,k j¥i
2) The density function f(X|©,) may be written as follows: f(X|©,)=f, (X,,10)

.f,(X(p,+l),...,X(T)!X,‘,), where X,‘,_—(X(l). X(2), ..., X(p)) i=1,2,..., k
We have

11Xy, ©) =) %Gy |2 exp{—- )

where u;ii=vec’ (X,‘,-—m,‘)G;“ vec (Xp,—mp), my =W l;‘. l;‘~——(l. ... 1),i=12,...,k
The matrix G, is a block matrix of p? blocks, where block (m, n) contains the mat-
rix T, (n—m), i=1, 2,...,k
The equation (2) for t=p+1,p+2 ..., T we can express in the_following form
81=B‘?‘. where 51 =(51(P1+ l)' E" (pl + 2)' ] e((T))'- f;'(’;(Pﬁ'l -"h), ci(P1+2
—q) ..., e, (T,
Blg).....B,(1) 1 0,...,0

B=|" Big) ... . B L -0y ok

0,...,0,B,(q).-..80) [ ]
It is known that e,~ N(0, I7-p 4q,® V), i=1, 2,...,k
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Hence ¢,~ MO, D,), where D;=B, (Ir_p[+qi® V)B, i=1, 2,...,k In order to
find the form of the function f,, we may use our knowledge of the distribution of the
vector €, i=1, 2,..., k. Regarding £%i = A(u) [X/(f—u)—p]=¢e(t) as a transformation
g(t) to A(¢) for t=p,+1,..., T, with the Jacobian of the transformation being I, we
obtain ’

nr ;) 1

flX(pitDee o X(D)| X,y ©)=(20) 2 D, “exp{—-L y,Dily),

where v, = (¥, (pi+ 1) (2t 2s o YT, ylt) =57 A0 X(E— 1)), i= 1.2, k.
Hence
T 1

f(X!O,):(‘Zn’)H"‘"ID,} : Gy, | cxp{—-;—[y,'.D;‘y,»+w§x_]}, i=12,..., k.

r:,l"‘

The discriminant function v,(X) takes the following form

(6) 27’:‘/(X)=.V;- D,TIJ’/'_J’,: D! }’i‘*‘wf,/—fi’f,i‘f"?lqi/,

where Ay=5-10(|Gy,|/1Gp, )+ 5 (1D /| D], iv j=1, 2. ..,k jL.

To calculate the minimum value of the Bayesian risk we need to know the distribu-
tion of v,;(X), i, j=1, 2,...,k, jFi.

2. Distribution of the discriminant function. First of all we take into consi-
deration the discriminant function of the form (5). Since G;! is a symmetric p. d. mat-

rix, there exists a nonsingular matrix A; such that G;'=A)A,, i=1,2,...,k For
n=1,...,N let L, be the eigenvalue and P;;, be the corresponding eigenvector of

Riy=(A;'YG;' A;Y, and let Py=(Py.,. ..., Pyy) where i, j=1,2,... k, j+i. We will
need the following notation
1 ' -
bz’/-n=—2_ ()‘U-n_ l)‘ pi/=2(Ai_l) G/' ! vec (mi_m/)»
Yl/:(‘Yi/J’ s ey yl/-N)zpi;l Pijs 8’7;.": :Y?j.n'lleb?j,n’

ky = - [vec (m;—m)) G vec (m,—mj)+1n (| Gy | /|G, ).

N
al/:kil—"fl Y%_j,/lebll.m iv j: l’ 2' L] k' j:*:i'

Theorem 1. The distribution of the discriminant function v,;(X) is

1 1 2 sin(s,(a y))
(7) i ' P('v,-,(X)<y|0=9,-)=T— = J —‘litl}(i:)—_ u,

wWhere

1 Y R
Sifl, y) = ’E‘ (tan=" (byy., 4)+8], , byy.p u(1+0],, U’)“)—-,l,— (y—a)u,
N —'3 1 N
ty(u) fl(l+b'f,.n“’) exp{a nz_l(5u.n by (1 +67 w)} i j=1,2,..., k j¥i
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Remark 1. The proof of this theorem is based on Imhof’s (1961) result con-
cerning the distribution of quadratic forms in normal variables.

Remark 2. Since the distribution function of v;(X) is very complicated we
will find its asymptotic distribution in the case of the ARMA(p, 0) processes, i, j
=1, 2,...,k j*+i

3. Asymptotic distribution of the discriminant function in the case of the
ARMA (p,, 0) processes. Now, we take into consideration the discriminant function
of the form (6). In the special case ¢,=0,the discriminant function (6) has the follow-
ing form

T T
20;(X)= ¥ zi(H)— X zZ}(H+w, —w? + 24,
t;p/+l = l_:-\ J p,‘
where 22(8)=y, (OV ' y(f), i=1, 2,..., k

We will need the following notation
ZI/':z;“ (t) ‘*Z;‘.) (t)’ n-—= T—p’ p= max p;
1<i<k

Sym= T Zy(t). my=E{Z;(t)|©0=04,

o} (n)=E{(S;(n)—nm,;)*| 0--0,), i, j=1,2,...,k jFi

Using a central limit theorem for dependent random variables due to lbragimoyv
(1975) one may show the following result (see Krzysko (1983)).
Theorem 2. For all pairs (i, J), i#j, as T—>

(v (X)— A~ ; (T —pymy)/ ; o, (T —p)

is asymptotically, normally distributed with zero mean and unit variance.

4. Deviation of the distribution of the discriminant function v,(X) from the
asymptotic normal distribution. In the case ARMA (p, 0) processes Theorem 2
shows that the limit distribution of w,(X) is normal. Now, we will estimate the pre-
cision of this approximation according to the length 7 of the time series.

The expected value and the variance of v,,(X), 4, j=1,2,..., k j¥i, are

N
my(N)=E{v,;(X)|©=0}=ky+ I by

R ; N 1 o,
ol (V)= Var {o,(X)|© = ©} =2 T b} +-4 T ¥},

respectively.
Theorem 3. The following inequality holds
‘ RV y—myN)

sup| P (v, (X) <y ©=0} ~® (5 (47) [=e(O, O, N)

where
8-'.'“"N|)'//.n’” | N

0,0, === {1807, — - —1)¥,

(8) C( Y N) J?nG;’/(N) {l 80:/(‘V) 6 nz.o(l:/.n l)}

L i1, 2, ...k ji
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Remark 3. The proof of this theorem is based on the Berry-Esséen type ine-
quality given by Zolotarev (1967).

Remark 4 Theorem 3 with p=1 (i.e. N=T) reduces to the result due to
Misiukas (1978). One should observe that the two constants which appear in the
expression ¢(®,, ©; T) of the Misiukas theorem are miscalculated. Instead 8.455 and
1.68 should be 8.1 and 1.8, respectively.

5. Numerical example. Let us consider the three classes of the two-dimensiona
second-order autoregressive series with the parameters

—1.0 —-03 —0.02 0.0 0.0 1.0 0.5
9""([ 33 1.0]' [ 00 —0.02 ] {0.0}’ [0.5 1.25})'
0,= ([—1.0 —1.0 ] [0.0 —0.05]' [‘20.0} [1.0 0.5 ]).
0.24 0.0 0.048 0.11 30.0 05 125
632([—1.0 —2.0}‘ [—0.04 0.0 ] [—20.0]' [1.0 0.5 ])
0.3 0.6 0.035 0.03 60.0 0.5 1.25
The values of ¢(©,, ©;, 7) given by (8) according to the length 7 of the time serieS

are given in Table 1.
From Table 1 we see that o«(®;, ©;, 7)—0 if T — co.

and

Tablel
The values of ¢ (8, 0;, 7)
| |
T . €(0. 0, T) €(e, 0, T) c(8y, 0, T)
10 0.184 0.107 0.073
20 0.129 0.075 0.056
30 0.105 0.061 0.047
40 0.090 0.052 0.041
50 0.081 0.047 0.037
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