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ON THE RATE OF ESCAPE OF A TRANSIENT RANDOM WALK
JOOP MIJNHEER

An integral test for the rate of escape of a transient random walk is proved.

1. Introduction. Let X, X,, ... be independent, identically distributed symmetric
non-lattice random variables with common distribution satisfying

(1.1) P(| Xy >x)=x"1L(x),

where L(x) is a slowly varying function for x—co. This means that the random variable
X, is in the domain of (non-normal) attraction of the Cauchy distribution. Then
there exists a sequence of real numbers @, such that ¢ 'S,, where §,=X,+ ... +X,,

converges in distribution to the Cauchy distribution. The numbers a, satisfy, for n—co,

(1.2) a,~cnl(a,)
for some positive constant ¢. By a local limit theorem of C. Stone [8] we have, for
ﬂ—»OO,
(1.3) P(|S,| =k,)~a;'k, if a;'k,—O0.

In [3] P. Griffin shows that for each 6¢(0, 1) there exists a random walk such
that

o oo a.s. if a<d
(1.4) h”mmf ne| Sl = 0 a.s. if a>38.

See example | in section 4. In this paper we shall also consider the case a=3. Griffin
makes use of a criterion proved by H. Kesten in [4]. We shall borrow some of the
ideas of the proof in [4] and also apply the following extension of the Borel-Cantelli

lemma.
Lemma 1.1. Let {D,} be any sequence of events with £ P(D,) = oo, then P(limsup

D,) - ctif
(1.5) liminf { )5‘ P fl glP(D,/\D,)g c.
k= k== 1=

See for the proof, for example, F. Spitzer [7].
The general form of a slowly varying function is given by

(16) L) = clx) exp{ [y~ e (y)dy),
where
(1.7) lim ¢(x)=c€(0, =)
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and

(1.8) xl:m g(x)=0.

See W. Feller [1]. In this paper we shall write

(1.9) & (x)=y(x){log x}~".
Obviously, (1.8) implies

(1.10) v (x)=o0(log x) for x—co.

We shall make some technical assumptions on y. We want to complete the ana-
lysis of the example given by Griffin. Therefore we restrict ourselves to functions v
which nearly behave like ¢ log; x for x—co. First we make the assumption

(1.11) y2(x) (logy x) (log x)—1—0 for x—co.
Then we have, for a, defined by (1.2) and y non-decreasing,

(L(n))~ L(a,) = exp{ f "y=1(log y)~' v (y)dy }= exp{w(a,)log (log a,/log n)}

< exp{v(a,)(logL(a,) (loga,) "}
Obviously we have
(1.12) lim (L(n))* L(a,)=1.

Let v be slowly varying with standard representation. v (x)=d(x)exp { fxy—l n(y)dy},
*o
where limn(y)=0 and lim d(x)=d¢ (0, ).
Y—soo X300

We also make the assumption
(1.13) vy (x)}{ max n(y)}log x is bounded for large x.

x0<y<x
This condition implies that if lim w(x)=co we have, for x—co, {y(x)}7 { w(x*)}—1

and
(1.14) w(x®) exp { —yw(x*)}~w(x) exp { —yy(x)}.

In section 3 we shall prove the following integral test.

Theorem. Take a¢(0,1) and y=log(l/a). Let X,, X,,...be i. i. d. symmetric
non-lattice random wvariables with common distribution satisfying (1.1), where L (and
V) are given as above. Assume that v is non-decreasing satisfying (1.11) and (1.13)
and exp{—yw(x)} is slowly varying for x—co. Let

(1.15) Iv)=J x~* (log x)~* w(x) exp {—yw(x) } dx.

Then we have
0 a.s. according as Ky)= >

liminfn°°|S,,|={ o as <o
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In section 4 we consider two examples and in section 5 we maxe some remarks.

2. The proof of the theorem. In the proof we consider estimates in which L(x)
only appears for large values of x. Therefore it is no restriction to assume that in
(1.7) we have c(x)=c=1.

Define the subsequence n, by

1

2.1) n=k"" o (k).
where ¢ is a slowly varying function at infinity with

(2.2) lim @(x)= =o.

X=900

One easily checks
(2.3) n¥{(nag1—ny) L (Ars1—ny)y'—0  for k—oo.

Define the stopping times T, by
24) T,=inf{l: [>n, and |S;|<!*}.

Take ¢>1. For n>n, we have

P(|Sn|<fn")"1 ZHP(T:.———‘I/\ |5..|<€'l")=l 2+1P(T.=1)P(15n|<fﬂ“IfS:|<l“)-
= =g

Let F, be the distribution function of S, Take S,=0 a.s. Consider, for [<n,

PUIS <A Sy <en)= [ T dFad 9)dF(x)

—1% —en%—x

o PP dFs ()= P(1 S, <19 P (] Sat] <(c—1)n%.

—1% —(c—1)n®

Thus we obtain
P(|S,| <ent)= £+‘P(T,=I)P((S,._/| <(c—1)n9).
;"h

"R+t
We want to estimate £ P(T,=[). We have
I—nk+l

n

"r42 *+2 n
 P(S,|<cn®)= X L P(Ty=0)P(|Si-t < (c—1)n%)

n—nk—H n‘-nk+l l=ng+1
"e+1 "a42
L P(Ty=) I P(ISei]<(c=Dn)
lnnk+ nw

-n

"rt2 "rya ! T4 "ee2 a0
S PT ) E P(ISa] <c—)= E P(Ty=l) T P(|Sal< (=1
wl) Ian.+l mwl)

:_,n.vl m
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This implies
—n

a1 "rs2 T e
(2.5) T P(T,=0)<{ T P(S,|<cn{ T  P(|Sn|<(c—Dn2}—.
=n‘+l n=/|k+l m=0

¢
Applying (1.2), (1.3) and (1.12), we obtain
(2.6) P(|S,| <n* for some n,<n<ngs1)

—

"r+2 R4
= (masr—nes)eng T { L(nas)} io P(|Sp| s(c—D)ng}.

Now we estimate

"e+2 a4t
@2.7) L P(|Sal <=1
We choose the sequence of positive real numbers b, such that
(2.8) b= ng 0q(R)/L(n3),
where @g(k)—oc for k—oc and
(2.9) 0'—%(k) L (n){0,(k)} " ~ exp {clog ng/w(n)}.
This sequence has the following properties for k—co
Te42 Tkt
(2.10.) by=o(ng X m=Y(L(m))™1,
(5,)
(2.10.ii) ng=0(b,L(by)),
(2.10.iii) L(ng42—ne41)/L(b,)—constant,
(2.10.iv) P(|S, <n* for some n,<n=nx41)

"r42
sc [ x7'(log x)~! y(x) exp(—yv(x))dx.

"e+1

We shall prove these assertions in the Appendix.
The first part of the theorem follows from the convergence part of the Borel-
Cantelli lemma.

If the integral diverges we define the subsequence n, by
1

@.11) =k o(k),
where ¢ satisfies
(2.12) @' (k) =(1—a) log n, exp (yw(n,)) (L(ny) ¥ (n4)) 7"

It follows that na41—n,~ k°(— @(k) for k- co.Using that exp(yy)is a slowly vary-
ing function, we obtain

7 Cxlog )7 () exp (— TW(RIMEx ~ () exp(—1¥(1y) 108 (10g a1 /10g )
' ~ v (n2) 2xp (v (1) (nas1=n,) (nylog my)"~"



102 Joop Mijnheer

~w(r,) exp (—1W(m)k' " o(k) (1—a) ™ (m,log )~
~y(ny) exp (—yw(n,) ni(l —a)y™ @' 7 (k) (n, log ny)~' ~ng (n, L (ne)) ™"
Define the events Dy, k=1, 2,..., by
(2.13) Dy:|S,, |=ng.

Then we have I P(D,)= co. The Hewitt—Savage zero-one law (see [5] p.80) implies that
P(D, i.o.) is either zero or one. Then it suffices to show that the liminf in (1.5) is finite.
Consider, for £</,

n: n;‘—x
P ADY=P(IS, | SHA ISy | <n) = [ [ dFys, (9)dF, (%)
——n: —n‘l’—x
ng ‘)n;‘
S [ [ AP () AF, (=PI S, | SA)P(| Syn,| <207,
-An: —2n;‘

One easily checks that {(7,+1—n,) L (R —m)} 0, =0(1) for k—co. Therefore we
have

(2.14) P(Dy ADp=c ni{(n,—ny) L (n,—ny )}~ P(Dy).

For [>2k we have {(n,—n,) L (n,—n)} ' n¢ = ¢,n3{n, L(n,)} " for some constant c,. This
implies that there exists some constant c, (independent of %2 and /) such that, for /=2k,

2.15) P(D,AD))<cy P(D,) P(D).
Next we shall show that there exists a constant ¢, (independent of &) such that

k—1
(2.16) xz P(Dy A Dri)=cs P(Dy)-

By (2.14) and (2.12) we have
A—1 k—1
X P(Dy A Drs)=c,P(Dy) ’zl”:“{(ﬂu 1— ) L (Regi—ny)}t

k—1
<c,P(D,) l}:l (Rrs1—ny)" L (g Ly i— 1)} 7' W (R so)f{log nes ™

- exp{ —YY(rs 1)} - (Mrt141—Nrsd).
From the definition of 7, and using the fact that ¢ is slowly varying, we obtain
(2.17) (Rrg1— ) M Arg 151 —Nrs )< C5l ™!

for some c; (independent of £ and /) and all £ and [
Using the representation of L, we obtain

"rt

(L(tnsi—n)) ™ Limav) = exp{, { y(logy)" v(y)dy}

_n.
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= exp{ W(nr+:) log (log ne+:/10g (nr+1—ny))}
= ¢y exp{—w(ns+1) log {1 —(1—a) (1 —(log 1)/(log k)}.
Then we have

E:P(Dk ADrii) = ¢, l"(D.)hl;f_-ll 7 y(nrs ) { 1og nas ) ' exp {—w(nr+r)
- log {l +(a~'—1)(log)/(log &)}

k—1
< ¢, P(D,) 1211“ Y (e ){ 10g nesiy " exp {—cq w(nrsr) (log ) (log &)}

r—1
=P (Dh)lfl I=1y(n,) {log ny} ' exp { —cyo v (n,) (log 1) (log n,)~1).

The last series converges as can be seen if we compare the series with the integral
cwy(n

)
dfk exp{—c;y2}dz.
Now it easily follows that the liminf in (1.5) is finite.

3. Examples. /
. (I/y)logsx  x>x,
Example 1. (See P. Griffin [3]). Take \v(x)={ 0 otherwise.

Then we have L(x)=c(log x)~/"exp {(1/y)log, x log; x}.
Define the slowly varying function A by H(x)=L(x)log x/logs x. Griffin noticed that

d 1 1
3.0 E(— L(x) )=xl'l(x)'
He considers a random walk with P(|X;|>x)=x"1H(x). Using (3.1) it is relatively
easy to estimate the series in (2.7). Then we have
R o a.s if a<e '
liminf =*|S, | = 0 a.s. a>e .
Example 2. Take
v(¥)=(/7){logsy+2log, y+logsy+ - - - +(1+38)log, ¥}, k=5. We have
<o for >0
1tv) {= ) for 8<0.

Conseguently we have

co a.s. according as §>0
0 a.s. 8=<0.

Remark 1. Take €>0. Define vy, i=1, 2 by w,(f)=y"(1—¢)logs¢ and
Valt) =171(1 +¢) logs L.
Define also v(#)=min (max (y(£), w(f)), wy(f)). The following assertions hold true
i v) < o =ly)<o
il A(y)= co = I(y)=co
i if /(y)<oco=wy(f)>y,(f) for ¢ sufficiently large.

liminf n—2| S, | ={
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The proofs of these assertions are similar to the proofs of corresponding assertions
in the generalized law of the iterated logarithm. See, for example, the proof of lemma
3.3.1 in [6]. The lower index of a transient random walk is defined to be the unique
8=0 such that

o . 0 a.s. if a>8
liminf n=|S, | :{x as if a<b.
In example 6.4 of [2] we have
L(x) = exp{(log; x) (1ogs x) (n +sin (logs X))}

with n€(y2, —). By differentation we find
w(x) = (logs x) {n+sin (logs x)+ cos (logz x)} + sin (logs x)+n.
Griffin shows that the lower index of the corresponding random walk is equal to
exp{—(n—y2)~% In view of the foregoing assertion it is clear that one should com-
pare the example above with
L*(x) = exp{(log, x) (logs ¥)(n—y2)}
instead to compare with
L**(x) = exp{n(log, x) (log x}.

See also the remark that the lower index is not monotone in the tails on p. 80 of [2].
Remark 2. One can extend example | in another way. We can ask for an integ-
ral test for

0
liminf { @(n)} ' [ S, | = {

% a. s,
where ¢ is some regularly varying function. This result is proved, under stronger con
ditions, by Griffin (personal communication).

Appendix. We shall prove (2.10.ii).

n{buL (b)) = L(n2){@xR)L(b)} = {@alR)} " exp{ bfky“(log Y w(yd y}
k

§{¢akk)}—‘ exp{y(n2) log(log n%/1og b,)}=(@s(k))"exp{w(n) (log L(ng)—1og @x(k))(log n)~"}

From (2.9) we obtain log L(n})—log @y(k) = c(log ne)(w(n2))~' —(1 —a)log ¢(k).
Then we have n:{bk[,(bk)}_‘avc{(p’(k)}_l because we can always choose ¢ such that
log (k)= o(log n¢) for k—co. This proves (2.10.ii). Next we shall prove (2.10.iii).

—n

Tppd 1
L(nx+2—nr1)/L(by) = exp{ ..I y i (log y) Tt w( y)dy}
k

= CXP{\I’("~+ o—nx4+1) log(log (nk“—n.“)/log bk)}
~ exp{W(r 42— 1) 10g (log((1—a) " ng @' ~%(k))/ log (n; o4(kY L(n3))}
~ exp {@(Ar+2—Me1) log (1—a)™" @'—%(R)L(n%) 94 (k))/ log ny}~ €xp {c}.
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Now we consider
M2 M1
ng L m{L(m)} ' =n{ L(Resa—nusa)} T 10g{(nar2—nas1)/[6,]}
k
=n3{L(b,)} log {(1—a)~ @' —(R)L(n)/@Ak)} ~c n{L(by)} " log ng/w(n2).
Therefore we have

k42 k+1
byl . (m L(m)™"} ™ S 0y(R) {L(n)} " L(by) v (n5)/log ny~ 0q(R) ¥ (n3)/ log ng= o (1)
%
for k—co, since we can choose @, such that @y(k)y(ng)=o(log nf).
Thus we proved (2.10.i.). Now we can estimate
Tera ks b "epa ks
I OP([S,<(c—Dm)= % + =
m=0 m=0 [ka-l

Te+2 k41
=0([ba] +cn o |2+| {mL(m)}~=cng log ng{w(n)L(b,)} .
k
Then, using (2.6) and (1.14),

P(|S,| <n® for some n,<n<ng1)
=(rya—nei)ng ! L0 L(na41)} " w(ngKlog ng}

k42
<c [ (xlogx)~!y(x)e~vdx.

"r+1
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