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EXISTENCE AND COMPLETENESS OF THE WAVE OPERATORS
FOR DISSIPATIVE SYSTEMS

P. STEFANOV

1. Introduction. Scattering theory of operators of Schrodinger type has been exten
sively studied recently. A new elegant method, treating the Schrodinger equation, has
been developed by V. Enss in [1]. The investigations of Enss has been extended by
B. Simon in [5] on a large number of examples. One of them is the Schrodinger
equation with absorption, where the perturbed operator A acting in the Hilbert space
LXR™) is of the form H=—A+ V with a potential V which is no longer self-adjoint but
ImV=0. Then, if V is —A— bounded with relative bound smaller than 1 (see [3]),
et will be contraction semi-group for £=0. In this paper we extend the results
of B. Simon for elliptic dissipative systems of differential operators.

Consider the matrix-valued differential operator Hy=ZXu—;AD* in the Hilbert
space # =LYR™; C"), where D*=D}. .. D:;", D;=—id/dxj, L =1, and A, are constant
(r<r) matrices. We impose the following conditions on the symbol A(&)=ZXu - Au&" of
the unperturbed operator f1,:

Al) A(E)=% - Al [ =1 and A, are constant symmetric matrices;

A2) det A(E)-0 for £-+0;

A3) The matrix A(£) has s disjoint eigenvalues @,(€),..., a(&) with constant
multiplicities d;, j=1,...,s for E¢R™ 0.

The self-adjoint operator F, generates a unitary group e “/ on the Hilbert
space. #.

The perturbed operator H is defined by the equality A= H,+V where V is an
operator in # such that I(V)>D(H,), D(V*)=>D(H,) and:

Bl) || Ve |- a| Hyo!+b| ¢| with some a<l;
B2) Im(Ve, ¢)-=0 for any ¢ ¢D(H,);

B3) a(R)=| V(Hy—i)™" x(| x[>R) | € L'(Ry, =);
B4) 2*(R)=|V* (Hy—i) ' 2 (| x|>R)|| € LRy, ).

Here 7( x|=C) stands for the operator of multiplication by the characteristic
function of the set {x/|x|=C} and R, is a positive constant.

As a consequence of Bl) and B2), / is a closed operator on D(H ). Moreover,
iH generates a contraction semi-group B,=e~1 in A (see 3], Th. X. 50). Finally, B3)
and B4) are the usual Enss’ conditions considered in [1, 2, 5].

Let #, be the subspace of # generated by the eigen-vectors of the operator #,
corresponding to real eigenvalues. Our main result is the following

Theorem 1.1. Suppose the assumptions (A1)—(A3), (B1)—(B4) fulfilled. Then

a) The wave operator Q* =s—lim,, . B_ e~ exists;

b) The limit W —lim.,.. e"" Bg exists for any ¢¢X ) ;

¢) The only possible finite limit point of real eigenvalues of I is zero and
any non-zero real eigenvalue has finite multiplicity.
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2. Preliminaries. First we give some information about the operators /4 and H.-

Lemma 2.1. Let iH be the generator of a contraction semi-group B,=e " on
a Hilbert space #. Then —iH is also the generator of a semi-group C,=e"""" and
C,=B,.

Lemma 22, Let iH be the generator of a contraction semi-group on a Hilbert
space A'. Suppose Ho=FEyp with E real. Then Ho=E¢. In particular:

a) If Ho=Eg, Hy=\y with E-=k and at least one real, then (9, v)=0;

b) If #, is the span of the eigenvectors of H with real eigenvalues then ¥,
and #} are invariant spaces for H.

The proofs of the lemmas above can be found in [5]. A basic point in our approach
is the following form of RAGE theorem, obtained by B. Simon in [5].
" Theorem 2.1. Let # and X be as in Lemma 2.2 Suppose that L is a bound-
ed operator and L(H—i)™' is a compact one. Then

. 1T,
Tll_’n:o—r-of,LB,fll‘é‘dt:O for feAH}).

As usual from this result and the compactness of the operator y(|x|<n)(H,—i)™*
it follows that we can find a sequence £,—-o with the property

(2.1 lim [[x(|x|<n)9,||=0, where ¢,=B, o.

At the end of this section we shall note that the eigenvalues a(&)=|&|'a;(&/|&|)
Jj—1,...,s of the matrix A(§) and the projectors IIA{&)=1I(&/ &) on the correspon-
ding eigenspaces are smooth for &0, according to the assumption A3). It is easy to
prove that the operator /, with the symbol A() has an absolutely continuous spectrum.

3. The Enss’ decomposition. The aim of this and the next two sections is to
prove the following
Theorem 3.1. Let H obeys the hypotheses of Theorem 1.1. Let {0,}, {n.}

n=1,2, 3,... be two sequences in # satisfying the conditions
a) ﬂ,,=(H—i)_sH(P,., q’neD(f{);
b) ||e,||=1;

o) lx(lx|<n)e,||—0, as n—oo.

Then there exists a function e(M)—0 as Moo, such that for each M>2 one can
decompose

(-3. l) Ny= "]L"T“.w‘% Tl(,;'t{“_,‘*' Na,M,out + Na, M, in
so that

Ay Indy,Ll=0 as n—co, M-ixed,

(B) [Ny |l <e(M) for each n,

(C) ?H Ve—ittim, von |dt—0 as n—oco, M-fixed,
0

(D" f‘[(li‘+i)“‘ V* e, ain || dt > 0as n-—co, M-fixed.

Furthermore, if ¢,=B, ¢ (and n,=B, n) for some sequence th—co, then
N in 0beys
(D) ‘rnn“\l.lu !, -0 as n—o, M-flxed.
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In this section we will describe the decomposition. Fix a constant M>2. Choose
two functions F and Yy such that

(3.2) F2)=2(z—i)?=(2—i) " +ilz—i)7;
_{ 1, 2/M<|s ' <M/2
=

(3.3)
0, |s|<1/Mor s|>M

and \VMGC“(R‘).

Let f, € J(R™ be a function with the properties 0<fyu(x), [fau(x)dx=1
supp fM:BﬂM:{§/|§|<eM} for a suitable €,>0, specified below.

Denote by K the compact subset of R™\0: K={&/ 1/Mb,=|&'=M/a,}.

Since
O<a,= min |ayo)|=|afw)/= max |ao) = by< o
o (sm— o (sm—1
1=k=s 1=k<s

for any j=1,..s we obtain that supp \uM(a,-((o))cK.
Choose €,>0 such that K+BEM<:O<:O<:R'"\0, where () is a bounded open set
in R™. Denote by U., the unit cube, centred at a ¢ Z™ and let y. be the characteristic

function of U, Consider the function fo=fy * Xa.
Thus, we obtain the partition of the unity in the “x"-space 1=ZX_ , ,mfu(X), such

that for any a¢ Z™ the function f,(x) is localized (not strictly) about a. In order to
construct a suitable decomposition in “£"-space, choose two functions G, and Gy, in
Cz (R™), such that the following two properties hold: Cp,(?)+ G (v)=1 if 0<A

<|v|<B, where A and B are positive constants, such that

{v;(&)=grad a;(8); &€ O}={v; A<|v|<B}.
fTtxiséi;()possible. because Euler’s equality la;(&)=(&, grad a;(§)) guarantees that v,(&)+-0
or .
(3.4) Gy ()=0 (G, (v)=0) if 0<A<|v|<B
and the angle between v (—v) and (1, 0,...,0) is smaller than 45° For a¢Z™ let
R, be a rotation, taking a to (jaj, 0,...,0) and finally, let g"/=Gou (Ra(vA8))) and
g(‘;:j = Uiy (Ru (75 (8)))-

Consider the pseudodifferential operators:

(35) ps—3 I g (D)v, (D) Fa; D)D) fulx)1l; D)

i=1 |a|>n/2
in
ex =
out

Lemma 3.1. R and P)" are well-defined bounded operators, satisfying the

following inequalities :
| Pex||sC, || (Ho—) P || C, [ (Hy—1) P || = C
mt' with constant C, independent of n.
ou
The proof of this lemma is similar to the proof of the corresponding resuit in [5].
For the proof of the last inequality it is important to observe, that the last operator

for ex :{
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II;(D) in (3.5) can be replaced by II;(D)y (D), where vy is a suitable function in
Cy (R™\0), such that y(§)=1 for £¢O.
Now we can write down the needed decomposition

36) Ny, =(F(H)~FH,) cpn+1§, T v, (Ho) FH) L (D) fa TID) 0, ;

== n
< _—
laj=

NP e ==V, (H)F(H) 045 Mntout=P" 0,5 Npmin=P @,

Since supp ((v,, F)(a; (D) 1;(D) fa 11; (D) 0,)” = suppy, (a;(€)) = O and g (%)
+g3(8)=1for £€O0, the equality (3.1) holds.

4. Free time evolution of the incoming and outgoing states. The important
role in the investigation of the incoming and outgoing states plays the following

Lemma 4.1. There exists a constant $>0, depending only on the matrix A(E),
such that

(4.1) 1 |x |<d(n+1t)) e~ (Hy—i) Py || < Cp{1+n+8)7%;
(42) (| x| <8(n+1)) et (Hy—i) Py || < C\(1 +n+ 1),
(4.3) % x|<8(n+1t)) e (Hy—i) P** | < Cpy (1 4+ n+-£)N

for t=0, n=1, 2,... with a constant Cy, independent of t and n.
Proof: Denote Pgy=ge(D)Ra;(D)v, (a;(D) IAD)f.11;(D). In order to verify
the first estimate (4.1) it is sufficient to prove that

| e~ (Hy—d) Py | (X)=Cp(t+ al)y N k|

for £=0, a¢Z™ and | x|<d8(|a|+¢) with suitable 5>0.
It is easy to compute that

(4.4) [e=t1e (Hy—i) P2 h] (x) = (20)—™ [ eite—arth—itay © b, (€) d,

_ N\
where ha,; (8)= € (@A) —)ge (8) v, F1I, fallh (&).
We have k4,€Cy(R™0) and supp 4., = K. In order to integrate by parts in (4.4)
consider the operator
LAx, 4, @, & Do)=| x—a—t, (&) £ (x—a — to, (&)~ o-
e o0,

where ©;(§)=grad a;(§). It is evident that L;e/x—a8)—ita; (%) piltx—al)—ita; 0}, Let us es-
timate the vector x—a—tv/§) for &¢supp k..
(4.5) | x—a—tvf8) | =] a+tvf8)|=&(| a|+8)=(| a P +|tv; ?

+2a, to))?—8(|a|+H)=p(|al+1)

for sufficiently small p>0, according to (3.4). After integrating by parts in (4.4) we
obtain

(4.6) le~ M (Hy— D) Pyt b | (x)= [ L™ b,y | (8) dE.

On the other hand, by using the inequality (4.5), one can prove that
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(4.7) L™V hoy| (E)=Cplt+ a )™ BENIDBhu_, (&).

From (4.6) and (4.7), applying Schwartz inequality, we obtain
0| x| <8(| |+ ) e=ieth (Hy—i) P2 | (x)

\

N
SCtH|a)™ | Z D (a))—0) g2y (B FIL Sl A (2) |

We use Leibniz rule to differentiate the term

AN
[(a/(&)—0) g2 (&) v, FUAL)| [e“ full; A (8)]

and the fact, that sup. | DPgey!(a;—iy, FII;/|<-c.

5. Proof of Theorem 3.1. In this section we shall establish the properties (A),
(B), (C), (D’) and (D) of the decomposition (3.1). We begin with the
Proof of (A): Consider the first term nQ),  in (3.6).

n

(AR —F(H,)) 0, | = |F(H)— R H) | |2 (] x[<n) e,
+ [ [(H=i ' —=(Ho=) N ([ x[>n) || [ @nl+] [(H=D72—(He—)?]x( x[>n) | | @n |

The first two summands tend to zero, according to assumption (c) of Theorem 3.1
and condition (B3) from section 1. By using the Vitali convergence theorem one can
verify the convergence to zero of the third summand.

For the second term in (3.6) we have that

5

T v, @O)RGO) D)L, D),
as -,
SCE(fyaxe U Ul OO |

2
The condition (c¢) of Theorem 3.1 and the fact that the operator of convolution

with the /-function (II,y)(x) “doesn’t delocalize too much” the function ¢, (for a
strong proof see [4, 5]) complete the proof of the property (A).

Proof of (B): The estimate (B) is obtained immediately: |n(), _[l<[(1—wv,)
F l.)le.=l|(1—w,)Fl~=¢&(M). From (3.2) and (3.3) it follows that limp_,.. e(M)=0.

Proof of (C): We start with the inequality | Ve “"n, moun! < /|V(Hy—i)™
x| x 1> 8(n+ )| || (Ho— )P || |10, ||+ [V (Ho— i)~V || | () x|<8(n+b) e (Hy — i)
Pl || @,|. Then, the property (C) follows from the assumption (B3), Lemma 3.1 and
Lemma 4.1.

Proof of (D’): This proof is based on the inequality

[(H* 0y Ve o | S0 V| L(H- D7 (] xd
<8(n+t)) e (Hy—i) P || | @ ||+ | (H*+ )| || V* (H,—D"x (] x]

n b

i”‘s("‘*t»” "(,,0 I)P:'“| ”"'n‘i
and the assumption (B4), Lemma 3.1 and Lemma 4.1.
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Proof of (D): We shall follow essentialy the argument, raised by V. Enss
(see [5]). The equality

Nn,M,in = pl"n 6’_”"”" (P+P’l'" (Btn—e—‘”"H(,XHO—l')'_'l(Ho—l')(P
shows that the property (D) is a consequence of two facts:

(5.1) lim || Pin(e™"n"™ — B, YH—i)™ | =

n—oo

(5.2) s—lim Pin g~ "a" =,

n—oo

Consider (5.1). We have

" t
(H+i)"\(B] —e“"™ P g | < ("|(H*+iy B; _, Ve P*| | @ |du
n ) n

>;f° (H*+ i)V it Pt || du . || o]

From the proof of (') it follows that (5.1) holds. The property (5.2) follows
from (5.1). Indeed, for any R>0 we have P! (Ho—i)e_"n”‘tp—'O for every function
@ with supp ¢=Bjp. Hence, it is true for any o. This completes the proof of Theorem 3.1,

6. Proof of Theorem 1.1. In this last section we shall prove Theorem 1.1, ap-
plying Enss’ decomposition principle (Th. 3.1). .

The existence of the operator Q* can be proved easily using Cook’s method
(see [4]).

Let us turn to the proof of the existence of the limit Weo for @¢o#;. It is suffi-

cient to establish the existence of the limitWmn only for the functions n =(H—i)"2He,
where ¢ ¢ D(H)N #} (see [5]). Fix the functions ¢ and n and let ¢, be the sequence

from (2.1), where @,=B, ¢, n,=B, n. We can assume that |@ |=1. Denote
a,=sup,o  (B,—e")n |l Applying Theorem 3.1, we have

|(B,—e=#)n, [|<2 il , I+ 2 D |

nM,w

!od :
HIf — (Bi—u € " Nn,at,0ut) dtt ||+ 2| M pin |

<2 S(M)+:}. | Ve—"“"oq 0 m0ut Ile-o(n).

The properties (A), (B), (C) and (D) guarantee that 0= lima, <2&(M), so lima, = 0.
This leads immediately to the existence of the limit Wx. Indeed, let £>¢, s>t, Then

| ettt B, n— eisth By || <5 | eitH B,n-—e"nH" Bt,,'\ ||+ eisH. B, n_e”,.”- B,"‘l l|< 2a,.

Hence, the sequence e/ B,n is convergent.

Finally, consider the point (¢) of Theorem 1.1. Suppose the contrary. Then we
can find an orthonormal sequence ¢,, such that He,=E,9, E,¢R, E,~E+0, +co.
According to Lemma 22, we have He¢,=FE,9,=H" ¢, Set n,= (E, —i) 7,0,
Applying Theorem 3.1 and the fact that || n,||=C and lim ||n,|=|(E—)2E| 0, <,
we get [n, *=(m, 0P, )+ N ) T (M Nestou) + (M Maain)-
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The first termn tends to zero according to (A). The second one can be estimated
as follows |(n,, n?), )|=C&(M).

nMw

Consider the third term. We have
[ (Mps Maationt) [=] (B; Np NaMout) i = ; (Mo B aou)  =lims . l (Nn, (B;he—”H“)nn.M.om)l

f:{.CSUP 'i (Bt—e—”H" )nn.M.ou! \}SC f Ve—itt Nn,M,out | dt — 0.
£50 0

Here we used the fact that w—lim; . e #”mn,=0 because F, has an absolutely conti-
nuous spectrum. The fourth term admits a similar estimate:

(M Mnstin) |[=[(BMp nn.m.m)i:tliml(n,., (B;—e™)n, min) |
=|E,—i| lim |[((H—i)7"n, (B;— e Muatm) |
{00

< C|E,—i|sup (H*+iy Y (B;—e™ )My | =C|E, " sup| (7)1 (B, —e"™ )My,
>0 >0

<C|E,—i] ;F ((H iy Ve et | dE—0.

We conclude that lim|/n,|2=Ce&M) for any M=2. Hence, lim,.. |n,|[=0, which
contradicts the assumptions.
This completes the proof of Theorem 1.1.
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