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ON SOME NEW PROPERTIES OF HARMONIC MAPPINGS
THEMISTOCLES M. RASSIAS

This paper is devoted to some properties of harmonic mappings which can be found useful in the
theory of minimal surfaces. The final part of the paper deals with a number of research problems which
are of current interest in function theory and related subjects.

1. On a generalization of the Riemann mapping theorem. Riemann’s problem
of mapping a simply connected plane region whose boundary consists of more than a
single point conformally on a circle as normal region can be reduced to the study of
two problems: (1) the interior problem that concerns the map of the interior
points and (2) the boundary problem that concerns the behaviour of the map on
the boundary. It was Riemann who studied the first problem by using techniques of
the Dirichlet principle and Schwarz and Neumann who gave proofs for the case of regions
with restricted boundaries. Later, Osgood gave a satisfactory answer to the general
case using methods due to Poincare. The second problem was solved for analytic boun-
daries by Schwarz and in other special cases by Picard. The general case was treat-
edby W. Osgood [5]and by C. Carathé¢odory [1].Itis my purpose now to indicate
how [ can apply the theory of minimal surfaces (see for example [1, 2, 8, 9, 11, 13
14)) for a generalization of the Riemann mapping theorem.

Consider the minimal surface equation (Lagrange [4]) given by
(1) (14+9))0.c— 20,050,y +(1 +92)0,, =0.

The surface is assumed in the non-parametric form and Plateau’s problem is regarded
as a generalized Dirichlet problem, with (1) replacing Laplace’s equation. According to
K. Weierstrass [14] a parametric form of the solution for the minimal surface
equation (1) is given by

x=Re F)(w), y=Re Fy(w), z=Re Fy(w)
where Fy(w), Fy(w), Fy(w) are any analytic functions satisfying
FXw)+ FX(w)+ F w)=0.

Set y,(w) r:—,l-(F,'(‘zc')+iF;(w)) and \Va(’&')=% F(w).
It follows that

wiw)
vy(w)
Denote U(y,)= [w,(w)dw— [ (vi(w)/v,(w)) dw then we can state the following theorem.

Theorem 1.1. Let T be a simple closed analytic curve in the z-plane. Then
there exists a regular function v (w) defined in Q={w: |w|=1}, such that Uly,)
maps Q simply onto the closed domain exterior to T and such that infinity is map-
ped into infinity, for a fixed regular function yy(w) defined in Q.

x+iy= [y(w)dw— [ dw.
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Remark: If yy(w)-=0, for any w, then the above theorem implies the Riemann
mapping thcorem, as a special case.

2. Following techniques from Morse theory and complex analysis (see for example
[13]) one can give global analytic proofs of the following fundamental theorems:

Theorem 2.1. A smooth Jordan curve U of total curvature at most 6n bounds
only a finite number of minimal surfaces of the type of the disk.

Theorem 22, Let T be an arbitrury smooth simple closed curve lying in the
smooth boundary of a uniformly convex subset of R*. Then T bounds a smoothly
embedded minimal disk of least area anong all enbedded disks having U as boun-
dary.

Theorem 2.3. In Euclidean space of three dimensions, let Ty, I'y be any two
Jordan curves not intersecting one another. [f the minimal surfaces M, and M,
determined by T, and T, taken separately have in commnon a point Q that is
regular for both of them, then there exists a doubly-connected minimal surface M
bounding by Ty, T,.

Remark: The previous theorem solves Plateau’s problem for two contours in R®
and thus derives the corresponding result of J. Douglass [2].

3. On one-to-one harmonic mappings. In the following we state some properties
of one-to-one harmonic mappings which have been proved to be very useful for a fur-
ther development of the theory of minimal surfaces in Euclidean space of three dimen-
sions. Let D, {z:z=x+iy and |2 <1} and Dg--{w:w=u+iv and |w/<1}.

Proposition 3.1. Let z: D, —C be a complex-valued harmonic function in
D,, such that z(w)=x(w)+iy(w). Suppose z(0)=0 and z(w) <1 for w|<1. Then

lz(w)| = ; tan=! w in D,.

Theorem 3.2. lLet z:D, D, be a one-to-one harmonic mapping of D, onto D
such that z(0)=0. Then
oz |2 9z 2 2

|ou | " ov | 2 in Dy,

where z - x +iy and w=u+iv.

Remark: It can be proved that there exists no harmonic homeomorphism of
the open unit disk in R* onto R®.

Conjecture 3.3. There exists no harmonic homeomorphism of the open unit
ball B in R* onto R i. e. there are no harmonic functions f,, f., f. defined in
B-={z=(z, zq 23):|2|< 1}, such that the mapping z-~(f\ fa. fs) is a homeomorphism
of B onto all of R®.

4. Let S;, be the class of all complex-valued, harmonic, orientation-preservings
univalent mappings f defined on the open unit disk [, such that f(0) -0 and f(0) 1.
It follows that f -k +g, where h(2)=2 Xy ,a2* and g(2)=X;  b,2* are analytic func-
tions in D,.

Theorem 4.1. A function fin Sy maps D, onto a convex domain if and only
if the analytic function h—e*'g is univalent and maps D, onto a domain convex in
the direction ¢ for all 9, 0<0<m.

Remark. Harmonic mappings cannot be determined up to normalization by their
image domains.

5. Some research problems. A function n(2) defined in a domain /) of the plane
is said to be subharmonic in D if
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(a) u(z) is upper semi-continuous in D,
(b) — o u(z)<+ o, and u(z)-=—<o in D,
(c) For every z, in D and all sufficiently small r (depending on 2,) we have

] 2r )
u(zy)= TS of u(z,+ re®)do.

In a space of higher dimension subharmonic functions are defined in a similar way. If
u(z) and —u(z) are subharmonic functions then x(z) is a harmonic function, If f(z) is
regular in a domain D, and f(2)=0, then u(2)=log f(z)! is a subharmonic function
in D.

Problem 1: (W. K. Hayman [3]). Suppose that u(z) is a subharmonic func-

tion and u(z)<O0 in the half plane 6| < ~;~, where z=re®,

Suppose also that A(r) =inf{u(re®): 0 < 3} -k, 0<r<co. Is it true that then
u(r): —%k, O<r<oo?

Remark: [ have proved that this is not true. In fact I have constructed exam-
ples of functions satisfying the given conditions and such that u(r)>——; kfor O<r< oo,

Problem 2: (L. Zalcman). Let #(z) be a real bounded continuous function on
D={|z <1}, and suppose that to each z¢D corresponds a real number r(z) with
0<r(2)<1— 2| such that (2r)~* [27u(z +r(2)e”®)dd =u(z). Must u(z) be a harmonic func-
tion on D?

Problem 3: (T. Ganelius). Let K;, K,, K; be disjoint closed sets in the ex-
tended complex plane, and ¢,, ¢,, €3 be constants. Let p,(f) be the best rational appro-
ximation to the function f which equals ¢; on K;, ¢y on Ky and c3 on Kj; i. e.

p"(f) = inf max .f(Z)_"g(z) ’
gERy 2 E UK,

where R, is the class of rational functions f of order at most #». Find a geometric
characterization of lim(p,)'".

Problem 4: (L. A, Rubel). Let u:R" - R be a continuous real-valued function.
If we want to know whether a homeomorphism ¢@: R"— R" and a harmonic function
v:R" -+ Rexist such that v(x)=u(p(x)) is it necessary and sufficient that there should
exist mappings o, Mg ..., W, such that F=(u, Wy Ma ..., W,) is a light open mapping.
of R" into R"?

Remark 1. The problem has been solved for n=2 by S. Stoilow and the solution
can be found in Whyburn’s “Topological analysis”.

Remark 2. More research problems in the theory of harmonic mappings can be
found in Th. M. Rassias [7, 10, 11, 12, 13].
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