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THE NIELSEN RELATION FOR MULTIVALUED MAPS
JERZY JEZIERSKI

The aim of this paper is to generalize the basic notions of the Nielsen fixed point theory onto a
class of multivalued maps. In §1 we define m-maps as upper semi-continuous maps admitting lifts
between the universal covering spaces. This property enables us to define the Reidemeister relation
induced by the m-maps and then in §2 the Nielsen relation. In the last paragraph we discuss the case
when the considered m-map is from the category admitting the fixed point index. The Nielsen number
defined there is the homotopy invariant being the lower bound of fixed points.

1. The Reidemeister Relation. Let X and Y denote topological spaces.

(I.1) Definition. We will say that a subset AcX has (x)-property iff it is
nonempty, connected and there exists an open neighbourhood U of A such that
each loop in U is homotopic (with fixed ends) in X to the constant loop.

(1.2) Remark. We may demand U to be path-connected provided X is locally
path-connected.

(1.3) Definition. The multivalued map F: Y — X will be called m-map iff
it is upper semi-continuous and the image of each point has (x)-property in X.

We will assume that the space X is connected and admits a universal covering
(i.e. X is locally path-connected and semi-locally simply connected (see [9]). Let us

fix a universal covering p: X—X. N
(1.4) Definition. The m-map F: Y — X such that the diagram

commutes will be called a lift of the m-map F:Y --- X

Let us notice that for every y¢Y p: F(y)—F(y) is a homeomorphism.

(1.5) Theorem. If Y is path-connected and simply connected, then for any
m-map F:Y X and points y,€Y, Xo€ X such that p(xo)¢ F( yo)there exists a unique
lift F: Y — X satisfying x,€ F(Yo)-

Proof. (a) Y=[0, 1], y,=0.

Let £¢[0, 1] and let U, denote the set from (1.1) (for the set F(f)) which we
assume to be connected. Since F is upper semicontinuous so there exists an open subset
A, [0, 1] containing ¢ for which F(A)cU, The family {A,},“o‘” forms an open co-
vering of the interval [0, 1]. Let A>0 be its Lebesgue number and suppose
. that A< 1/n: Serdica Bulgaricae mathematicae publicationes. Vol. 13, 1987, 174—181.
Consider the interval [0, 1/n]. Thg‘re is a set A, containing this interval such that
HA,, ) U, . Each loop from Uy, is trivial in X hence p~'(U,) splits into the sum of
disjoint connected components each of them mapped homeomorphically by p onto

SERDICA Bulgaricae mathematicae publicationes. Vol. 13, 1987, p. 174—181.
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U:,. Let 5,2 U —p~ 1(U,,) denote the inverse map onto the component containing
xo We define for £¢[0, 1/n] F(t)=s, F(f). Then we choose an arbitrary point

X, € A(1/n) and extend F the same way onto the interval [0, 2/n]). Following this pro-
cedure we get the desired lift.

(b) Y=10, 1]2, y,=(0, 0). The proof is similar.

(c) The general case. Choose an arbitrary point y¢Y. Let ® be a path in Y join-
ing y, with y. We apply (a) to the map Fo: [0, 1]— X and get a lift (Fo): [0, 1]
--- X such that (Fm)(O))xo. We define A y)=(Fo)1).

This definition is correct: if ®" is another path joining y,, with y then they are
fixed end homotopic and thanks to (b) (Fo)1)=(Fe'X1).

16 Corollary Let F: X— X be a m-map and letx, .x2 EX’ be such points

that p(xg)(Fp(xl) Then there exists a unique mmapF X X for which the
diagram

o F 5
X —— 3 X
P
i
X ——— ==X
X
commutes and % € F(xy)- |p
Proof. We apply (1.5) to the diagram . V
~ P
i s, i i i

Let us denote by lift F the set of all m-maps F: X— X for which the diagram

commutes.

We will call the elements of lift F the lifts of m-map F. Let us recall [5] that the set

of all (singlevalued) maps a: X —+ X'such that the diagram commutes x\"\: "-/"'

and forms a group (isomorphic to the fundamental group of the space X). We will
denote this group by 9.
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(1.7) Corollary. Let us fix one element Felift F. Then each lift of F is of

the form oF, where o ¢9 and o F=BF iff a=8. .
Now we define an equivalence relation R on the set lift F

(1.8) FRF iff F =y Fy™ for some y¢$9.
Following the singlevalued case we will call it Reidemeister relation and denote the
quotient set

V(F)=lift F/R.

The elements of the set 7(F) will be called Reidemeister classes of the m-map F.

(1.9) Remark. The above definition of 7(F) depends on the choice of the uni-
versal covering. Nevertheless one can prove that the sets of Reidemeister classes got
from different universal coverings are in natural one to one correspondence.

The number of elements of the set /(F) will be called the Reidemeister number
of the m-map F. Now we are going to check that it is a homotopy invariant.

(1.10) Definition. Two m-maps F,G: Y --- X are called m-homotopic iff
there exists m-map H: Yx[— X such that H(y, 0)=Fy) and H(y, 1)=G(y).

(L11) Corollary. Let F, G: X— X be two m-maps and let H: XxXI1— X be
the m-homotopy joining them. Then for any F¢lift F there exists a unique m-map

H: XXI— X such that the diagram

~ [ -
Xx] ————— X
#pxld Lp
XX —— o X commutes and H(x, 0)=F(x).

Thus F(.,1)¢liftG and this way the homotopy /7 determines a bijection between
the sets lift /7 and lift G. This bijection preserves the Reidemeister relation and induces
a one to one correspondence between the sets 7(F) and (G).

(1.12) Theorem. The Reidemeister numbers of the m-homotopic m-maps are equal.

2. The Nielsen Relation. I[n this paragraph we will study the fixed point set of
the m-map F: X—X. We will denote it by

Fix F={x¢ X: x¢€ F(x)}.

(21) Definition. Let x, x'€¢FixF. We will say that x and x' are Nielsen

equivalent iff there exists a lift Felift F such that x, x'¢ p(Fix F). We will write
then x §; x' and denote the quotient set by ®'(F)=Fix F/N.

(22) Remark. When F is singlevalued then the above definition coincides with
the classical Nielsen relation [5].

(23) Lemma: /If x¢FixF, then there exists an open subsets V, containing x
such that yeV (\FixF implies x 37 y.

Proof: Let x¢Fix F and let U, be the corresponding neighbourhood of Fx)c-X
from (1.1). Since F is upper semi-continuous there exists an open subset V, contain-
ing x such that AV,)=U, We may assume that V,  is path-connected and that
V.cU,. Let yeV, NFixF. We will show that x 5 y. Let p: X -+ X denote again a
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universal covering and let us fix a point x~(p"1(x). From (1.6) we get a lift F:
X — X such that x¢F (x). Consider the restriction of F

F: p= (V) —p~(U.).
Two above sets are disjoint sums of connected components, each of them mapped

homeomorphically by p onto V, and U,, respectively. Denote by V7, Uz the compo-
nents containing x. We get a commutative diagram

v
)
v

where the vertical Lineg are homeom_grphisms ang Vic U;. Now it is obvious that if
yeFix FNV, and y¢V, satisfy p(y)=y then y¢F(y). Thus x, y¢p(Fix F)soxﬁy.
(24) Lemma: Let F: X — X be m-map. Then

(a) FixF= U p(FixF);
Feun r

~

F
—— “"

U
J'p
F

x T

-~
X

(b) for any two lifts F. F of F the sets p(Fix 2y p(FixF) are either equal or
disjoint ;

(c) p (Fix F)=p(Fix F)+Q implies F J5 F.

Proof: Similar to the singlevalued case [5].

Let x¢Fix F. Let us consider L,={F¢lift F: x¢p(Fix F)). Then (2.4a) implies
that L, is nonempty and it follows from (2.4 b, c) that L, is exactly one Reidemeister
class. On the other hand (2.4 b, c) implies that L =L, iff x N Thus we get injec-

tive map
v: ®'(F)—v(F)
given by the formula v[x]=L,.

3. Generalized Fundamental Groupoid. There are two equivalent definitions of
the Nielsen relation for singlevalued maps [5]. The first uses the universal covering;
we have generalized it here as definition (2.1). Let us recall now the more popular one:

(3.1) Definition: Let f: X—X denote a singlevalued self map of a topolo-
gical space X. Then two points x, x'€Fixf are called equivalent iff there is a
nath : [ — X joining them such that ® and fo are fixed end homotopic.

The last approach can not be simply applied to multivalued case since the com-
position Fo is generally no longer a path. Nevertheless we will show how to gene-
ralize this definition onto the case of m-maps. This approach seems to be more
convenient in calculations.

Let us recall

(32) Definition. Let X be a topological space. The category which objects
are points of X and morphisms from x to x' are the fixed end homotopy classes
of paths joining these points is called the fundamental groupoid of the space X [9].

We denote the set of morphisms between the points x and x" by Il (X: x, x')
and the whole fundamental groupoid by T(X).
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(3.3) Remark. Any continuous singlevalued map f: X' — Y induces a functor
1(f): T(X)~TI(Y) by formulae TI(f)x)=f(x), N(Hlo]=(fo].

Using these notation we may formulate an obvious

(34) Lemma. Let f: X—X be a continuous singlevalued self-map. Two points
x, x'€Fix f are equivalent in sense of (3.1) iff the map

n(f): N(X; x, x)—T(X; x, x')
has a fixed point.

The aim of this paragraph is to generalize the notion of fundamental groupoid
to extend the definition (3.1) onto the case of m-maps. Then we will check that this
extension coincides with (2.1).

Let X denote again a connected, locally path-connected, semi-locally simply-connect-
ed topological space and let A, A, be two subsets of X satisfying property (+) of
(1.1). Then the sets TI(X: a, a,) for (a, a,)¢A,x<A, may be identified as follows:
let U, be a path-connected neighbourhood of A; from (1.1), let a; a’;¢A; and let o,
be a path in U, joining the points @, and a,(i=0, 1). Then we identify I(X; a,, a,)) [a]
with [o;'=a=0,]€ TI(X; a;, a;) and define the quotient set

(3.5) nX; A, A= U TI(X; a ay)/~.
ot

Let (a,, a,)€ Ay<A, and denote by
iana: THX; ag @) —TI(X; Ay Ay)
the natural bijection.

(36) Remark. When A, and A, are single points then (3.5) agrees with (3.2).

(3.7) Definition. The generalized fundamental groupoid of the space X is
the category which objects are subsets of X satisfying (+)-property and TI(X; ApA,)
is the set of morphisms between the objects A, and A,. We will denote this cate-
gory by TI(X). N

(38) Remark. T(X) may be regarded as a subcategory of II(.X).

(39) Lemma. Let X be a connected space admitting a universal covering and
let Y be an arbitrary topological space. Then each m-map F: Y—~X induces a
functor

M(F): N(Y)— TI(X)

which coincides with TI(F): TI(Y)—TI(X) when F is singlevalued map.
Proof. We define TI(F)(y)=F(y) for each y¢V. Let [w]¢II(Y; vy, ¥)). Let us

fix a universal covering p: X — X and points x,€ F(y,), X, € F(y,), X, €p(x,). Then
thank to (1.5) the diagram

=

wm F

e ¥ e X

admits a unique lift (Fo) such that Yo (Fo)(0). Let {x,}) =(Fw)(1)1p~'(x,) and let ¢
be a path in X joining x, with x,. We define



The Nielsen relation for multivalued maps 179

(3.10) T(F) [0] = i [ 7)€ (X5 F(yo) F(3)-
One can check that the above definition does not depend on the choice of the cover-

ing X, the points x,, X, X, and the path t. Thus we get the desired functor T(F).
Now we are able to modify (3.1) (compare (3.4)).

(3.11) Definition. Two fixed points x, x' of the m-map F:X-X are ingp
relation iff the maps

T(F), iwenn: THX; x, x')— TI(X; Fx), Ax")

have a coincidence point.
(3.12) Theorem. The relations N A are equal.
Proof. Let x N x'. Then there exists a lift F

~

F

X ——
"’F
X

_—

P such that x, x"¢p (Fix F).

4 4L

Let us choose two points % ¥ €X such that p(X)=x, p(¥')=x', and X, X' €Fix F.
Let  denote the path in X joining the points x and X’. Then the commutative diagram

F/ ‘P

' Pw X F X

gives us T(F)(p®)— i [pw] hence x NG xt.

Assume now that x N x'. Then there exists a path ® joining x with x’ in X such
that

(3.13) (F)o) =i (0] € X, Flx), Ax)).
Let us fix a point x¢p~'(x) and suppose that the lifts

/x /35
/‘T' P Fm fp
! i-—- > & . w’- X i» X
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satisfy @(0)= X ¢ (Fo)(0). Then by (3.13) and (3.10) ®(1)€ Fo(l). Take the lift F such
that x¢FixF. Then x¢F(x)=Fo(0) and we get two lifts Fo, Fo of the map Fo
such that Fo(0)nFa(0)+ @ hence Fo=Fo. In particular o(1)€ Fo(l)=Fao(l) so o (1)
¢ Fix F. The equality po(l)=w(1)=x’ implies x, x’¢p (Fix F) so x N x'.

(3.14) Corollary. Let F: X —~X denote a m-map and let x, x'¢Fix F. Sup-
pose that there exists a path joining them such that the composition Fo: [ — X
admits a continuous singlevalued selector t satisfying: (0)=x, t(1)=x" and the

paths o, v are fixed end homotopic. Then x N X

Proof. It follows from the definition of the induced map (3.10) that TI(F)[w]
=iy [t] € II(X, F(x), F(x’)) hence x I x’ and the theorem (3.12) gives us x N x'.

4. The Nielsen Number. Let X denote a metric ANR. In this paragraph we will
consider the m-map F: X — X satisfying

(4.1) F is upper semi-continuous,

(4.2) the image of each point is Q-acyclic continuum (see [4]),

(4.3) the image of F is relatively compact in X

We are going to define the Nielsen number of such map.

Let {/ be such open subset of X that U/ Fix F is compact. We will denote by
i(X, F, U)¢ Z the fixed point index introduced in [3] (F denotes here the decompo-
sition consisting of the unique acyclic function F: see also [7]).

Let us recall its necessary properties:

(4.4) if U and V are such open subsets that U Fix F=V (1Fix F is compact,
then (X, F, U)=i(X, F,V);

(4.5) if H: UxI— X is a multivalued homotopy satisfying (4.1), (4.2), (4.3), then
i(X, Hy,, U)=iX, H, U) (where /,: U— X is given by the formula /{,(x)=H(x, t)
xeU, tel;

(4.6) if i(X, F, U)+0, then Fix FNU+=Q;

(4.7) if f: X— X is a continuous singlevalued selector of F (i.e. f(x)¢ F(x)) and
Fix FN U is compact then so is Fix fNU and (X, F, U)=iX, f, U) (see [7] Propo-
sition (4.1)).

Let us consider a m-map F: X -— X satisfying (4.1), (4.2) and (4.3). Let A—Fix F be
one of its Nielsen classes. Let us choose an open subset U—=X for which U () Fix F=A.
(4.8) Definition. The class A will be called essential iff i(X, F, U)+0.

The above definition does not depend of the choice of the neighbourhood U (pro-
perty (4.4)).

The compactness of the set Fix # and lemma (2.3) imply that the number of all
Nielsen classes is finite.

(4.9). Definition. The number of essential classes of the m-map F is called
Nielsen number and is denoted by N(F).

(4.10) Theorem. Let H: XxXI—~X be a homotopy satisfying the conditions
(4.1), (4.2), (4.3). Then N(H))=N(H,).

Proof. For a subset Z— X</ and a number £¢/ we denote Z,={x¢ X: (x, {)
¢Z}. For a m-self map F we denote by ®'(F) the set of its Nielsen classes.

Let H: X<I-+XxI denote the “fat” homotopy, i. e. H(x, £) = (/{(x, ), ). It is
also the m-map and for A¢®'(H) either A, ¢®'(H,) or A, - and moreover for
B¢ ®'(H,) there exists exactly one class A¢®’(H) such that A,—=B.

Now we are going to prove that if A¢®'(H) and U is such open subset of X'/
that U () FixH=A4, then

X, t, U)=iX, H, U).

lt[OiS enough to show that the number i(X, /1, U,) is locally constant function

of £¢[0, 1)
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Let us fix #, € [0, 1]. The compactness of A gives us neighbourhoods V' and W
such that: 4,6V [0, 1], A,cWcU, and AN(XXV)cWXV=U. We may assume
V to be connected. Then for arbitrary £¢V we get from (4.4) and (4.5)

i(X, H, U)=i(X, H, W)=i(X, H,, W)=i(X, H,, Uy).

Let B¢ ®'(H,) be an essential class and let A¢ ®' (H) be the only class satisfying

B=A,. Then A,¢®(H,) is also essential and it proves that
N(H,)=N(H,).

The same way we prove the apposite inequality.

(4.11) Theorem. The m-map F satisfying (4.1), (4.2), (4.3) has at least N(F)
fixed points.

Let f: X— X be a singlevalued continuous selector of F. Then Fixf—FixF and

for fixed points x, y€Fixf x Y with respect to f iff x Ny with respect to F.

Thus if A¢ ®'(F), then ANFix f¢ ®'(f). Moreover, for any open subset UcX such
that U Fix=A we get from (4.7)
i(X, F, )=i(X, f, U).

The last equality implies

(4.12) Corollary. If Fis a m-map satisfying the conditions (4.1), (4.2), (4.3)
and if f is its continuous selector, then N(F)=N(f). I f, f' are selectors of F, then
N(f)=N(f) :

(4.13) Example. Let X be a metric ANVR and let F: X— X be a compact
upper semi-continuous map such that A(x) is nonempty compact AR (x¢X). The de-
finition (4.9) may be applied to this map.

To prove this let us notice that the conditions (4.1), (4.2), (4.3) are evident so
the rest follows from:

(4.14) Lemma. Let X be a metric ANR a=d let A be a nonempty, compact AR
contained in X. Then A has (x)-property in X.

Proof. Since X is an ANR so it is a retract of an open subset U of a normed
space E£. We may assume that XcUcE. Let r: U— X denote this retraction. On
the other hand since A is AR there exists a retraction r,: X— A. Let us denote
U ,={x€U: [x, r,r(x)]<U} ([a, b] denotes the interval joining the points a, b¢E).
U, is open subset of U containing A. Let us put V,=X1 U,. Then the formula

H(x, H)=r((1—18) x+tr(x))
gives the homotopy between the inclusion i: V,— X and the retraction r,: V,—AcX.
This way each loop from V, may be deformed in X into A and there it is contractible.
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