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ON THE NUMBER OF HAUSDORFF GROUP TOPOLOGIES
ON INFINITE ABELIAN AND FREE GROUPS*

Dedicated to the memory of Professor I. Prodanov
DIETER REMUS

In 1945 the following question was posed by A. Markov [12] dealing with free
topological groups: Does every infinite group admit a nondiscrete Hausdorff group
topology ? He was in [13] able to give a necessary and sufficient condition for the
existence of such+a group topology on a countable group, but nevertheless the problem
remained open. For abelian groups A. Kertész, T. Szele [10] gave a positive
answer to Markov's question in 1953.In 1976 S. Shelah constructed a nonabelian group
of cardinality N, admitting only the trivial group topologies [24]. In the proof he had
to assume CH. Considering Hausdorff group topologies, CH can be omitted, as G.Hesse
has shown in [9]. At the workshop on Burneside groups held at Bielefeld, FRG, in
1977, S. Adian mentioned the existence of a countable group which is only discretely
topologizable to become a Hausdorff topological group. Relating to this, Adian reports
that A. Ol'shanskii has pointed out the application of his results on classifications of
periodic words to Markov’s question (cf. [1], [15]).

The investigation on which groups there exist exactly 2?‘6' Hausdorff group topo-
logies, the maximum number possible, was started by J. Kiltinen [11]in 1974. Fol-
lowing him, those groups are called highly topologizable. Kiltinen shows that every
infinite abelian group is highly topologizable, using results from the theory of topolo-
gical fields. K. Podewski [16], in his turn, confirmed the quoted result by altogether
different methods. (Only for the real numbers that result is proven in [3] by the aid
of topological vector spaces.) At the same time, J. Heine asked in [7] for the number
of Hausdorff linear group topologies on infinite abelian groups. It was well-known that
an abelian group can be furnished with a nondiscrete Hausdorff linear group topology
if and only if it does not satisfy the minimum condition for subgroups ([5], p. 34; [10]).
Now Heine proved that every abelian group of infinite rank is highly topologizable
by linear group topologies. For groups of finite rank he could reduce his problem to
torsion-free groups. In this case, he gave partial answers.

In the theory of minimal topological groups precompact group topologies play an
important role (cf. [17]). In particular, 1. Prodanov, L. Stoyanov [18] proved the
deep result that every abelian minimal topological group is precompact. The lattice of
(not necessarily Hausdorff) precompact group topologies has been studied in [19]. It is
natural to ask for classes of groups which are highly topologizable by precompact
group topologies. Before Shelah’s result it was well-known that there are nonabelian
groups possessing only the indiscrete topology as precompact group topology [14]

* This paper is an enlarged version of a talk given at the Topology Conference (September 1984)
in Primorsko (Bulgaria).
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Without making use of Kiltinen’s result, S. Berhanu, W. Comfort, J. Reid[2],
and the author [19, 21] have independently shown the following, of which one can
find generalizations in [2], too.

Theorem 1. Let G be an infinite abelian_group. Then (a) G is highly topologiz-
able by precompact group topologies. (b) For |G|>2N- there is no metrizable pre-
compact group topology on G.

If N,—=| G| =2N,, then there exist exactly 2%\ metrizable precompact group topo-
logies on Q.

S. Berhanu, W. Comfort, J. Reid have additionally shown in [2]

Theorem 2. Every infinite abelian group G admits precisely 21¢! metrizable
group topologies.

The question that suggests itself is whether there exist classes of nonabelian groups
for which correspondent statements are valid. Pertaining to this, the author has proven
in [19] that every free group is highly topologizable. In the proof the countable case
follows from the following result of R. Zobel [25], which was independently proven
by K. Podewski [16] in a more general form: Let G be a countable group admitting
a nondiscrete Hausdorff group topology. Then G possesses exactly 22N, Hausdorff group
topologies.

lng[8, 9] G. Hesse has studied classes of countable nonabelian groups which are
highly topologizable. In particular, every countable solvable, FC-nilpotent or locally
nilpotent group is highly topologizable. For further results concerning the topologiz-
ability of nonabelian groups see [4, 22, 23|.

Using only in the abelian case one of the results mentioned till now, it was
shown in [20]

Theorem 3. Every free group is highly topologizable by precompact group
topologies. ;

In [6] M. Hall proved in 1950 that the finite-index topology on a free group is
Hausdorff. Now one can intensify Theorem 3, making use of the methods applied in
its proof.

' 3

Theorem 4.([20]). Every free group F admits ! 'Hausdorff precompact group
topologies finer than the finite-index topology on F.

Finally, the following problems remain open: )
(1) Does every free group F admits 2/¥/ metrizable group topologies?
(2) How many metrizable precompact group topologies can a free group possess?
(3) Are there further classes of nonabelian groups which are highly topologizable (by
precompact group topologies) ?
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