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LOCALLY DECOMPOSABLE RIEMANNIAN SPACES
WITH A CONSTANT HOLOMORPHIC 4-CURVATURE

MARIA KIRILOVA VASSILEVA

The present paper deals with the locally decomposable Riemannian spaces with constant 4-curva-
tures of the 4-dimensional linear holomorphic subspaces of the tangent spaces. Some curvature proper-
ties are obtained.

1. Introduction. Let M be a Riemannian manifold with a metric g having an
affinor tensor f such that:

(D =, o(fX, V)=g(x, fY) f=0,

where X, Y ¢ ¥(M), and <7 is the Levi-Civita connection. In this case M is called
a locally decomposable Riemannian space (M=M, XM, of the Riemannian spaces at
least locally) [5].

It is known that with respect to the separating coordinate system f has special
constant components. Let

p

©) P S

Similarly to the case of the complex structure we can define the notion of a linear
holomorphic subspace of the tangent space at a point of the manifold M. We shall call
the linear subspace E” in T,M, s ¢ M a holomorphic one if fE™=E™. Thus, if M is a
manifold with a structure of the algebra of the double numbers (p=g¢), then such a
linear holomorphic subspace will envelop a holomorphic surface which is a realization
of some surface in a manifold over the algebra of the double numbers (2, 3].

The necessary and sufficient condition for a B-manifold to be a manifold with
constant curvature of the 4-demensional linear holomorphic subspace, see [4], for the
case when tr f 0 (i. e. p—q) is obtained [1].

In this paper we consider the more general case, when p and ¢ are arbitrary na-
tural numbers. But this time the above definition of a linear holomorphic subspace is
applied without the requirement for f to be generated by the algebra of the double
numbers.

Let M be a locally decomposable Riemannian space, s¢M and {e;, €y ..., €,

e ey €,) bea separating coordinate system in 7 M, where fe,=e, i=1, p and
fe, - —e_,a-1, ¢. Let us denote by U* (resp. U™) the subspace of 7,M with a base
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{en es ..., ey} (resp. {e), e, ..., e}). Evidently U* | U~ and if x¢U* and y¢U, then
{x, v} is a holomorphic section. We consider the 4-dimensional holomorphic linear sub-
spaces [t={x, y, z. u} of T:M of the following types:

L x,veUr, z,ueU ;

I. xeU* yz,uelU;

. x, 9y, z¢U*, ueU™;

IV. x, v, 2 ucUt;

V. x, y,2,ueU.

If the curvatures of all £* of the type I are the same, then M will be the class
of the manifolds with a constant holomorphic 4-curvature of 4-dimensional linear holo-
morphic subspaces [1]. We denote this class by CH,, for brevity. Similarly we intro-
duce the classes

CHy, CHw, CHy, CHy and CH=CH,(\CHu(\ CH\u (1 CHwv N CHy .

2. Curvature tensor field of a locally decomposable Riemannian manifolds in
CH\ Let M¢CH, E‘={e, e, e, e, and let K(E') be E} 4-curvature. Since the sec-
tional curvatures of the holomerphic sections vanish, then

K(EY) = Ke,, )+ K(e}, €)
We suppose that K(E£*)==C", i. e.

(3) K(e,, e)+K(e,, e))=C"
et us fix e, ¢, and let e, e, run over U~. Then
(4) Kle,, eg)+Kle, e)=C" (i, j=1, ..., 4q).

Subtracting (4) from (3) we have
K(e,, e))=Kie;. e)).

Consequently, the curvatures of all sections of U~ are the same —C| . Similarly we
obtain that the curvatures of all sections of U* are the same —C|. So, we get, that
M, (resp. M,) is the space with a constant curvature C| (resp. C ).

We denote by: x*, x— — the projections of x¢ 7 .M respectively on U, U™
R,, R, — the projections of a curvature tensor R of 7T M respectively on Ut, U~
&, g — the projections of g on U*, U~. The following relation is valid :

5) R(x, ¥)z=Ri(x*, y*)z+ DRy(x~, y )z

Now, making use of the algebraic structure of the curvature tensor of a Riemannian
space with constant curvature the above notations and (5) we obtain:

(6) R(x, v, 2. u) ,,‘ﬁ-,'f%i (&(y* 2D)gi(x, ut)

&lxt 2R ) o 8y 2 )e T u) g 2 ey w)h

where t(R,), ©(R,) are the scalar curvatures of

uRy) C; = HRy) )

M,, M,, respectively ((‘l = Xp—1r -
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Using (1) and (2) we obtain the equations
1 ~
(M &i(x%, y)=— [&lx, ¥)+&(x, y)]

&(x—, y)=5 [gx 3)— &(x, Y, &x, 3): =g(fx, ¥).

Usually for the pure, symmetric tensor fields 4, B, the tensor field L4 5 is defined by
the condition
(8) Las(x, y. z, u)=B(z, y)A(x, 4)—A(x, 2)B(y, u)+B(x, u)A(z, y)—A(y, u)B(x, z)
+ Bz, y) A(x, u)—A(z, X)B(y, u)+B(x, w)A(z, y)— A, u)B(z, X), x: =fx.
Then from (7) and (8), the equality (6) can be rewritten in the following form
(R

(9) R(x, y, 2, ")=m[l~g¢()‘- Yoz, w)+ Ly (x ¥, 2, 4)]
R.
E‘;(qu)—l)— (Leg(x, ¥, 2, u)—Lg (x, ¥, 2, W)].

Thus, if M¢ CH,, then (9) is valid. Conversely, is (9) is valid, we can obtain directly

4 _ T(Ry) TRy ‘o

(10) KIE) = pp—1y " qq-1 ~ G600
which implies M ¢ CH'. Hence we proved the following

Theorem 1. Let M be alocally decomposable Riemannian space. Then M ¢ CH,
if and only if, its curvature tensor R satisfies (9).

This result is more general than the result from 10.1 in [1].

3. Locally decomposable Riemannian space in C/.

1. Let M¢ CH, and K(E*)=C'", Then M,, M, are manifolds with constant curva-
tutes C;, C|” respectively and from (10) it follows

C,+C;'=C.

2. Theorem 2. Let M¢ CHy, p=5 (resp. M¢ CHy, ¢ =5)and K(EY)=C" (resp
CY". Then M, (resp. M,) is a manifold with a constant sectional curvature C,
(resp. Cy) and Cy=1/3C", C3=1/3C".

Proof. Let M¢CHi. Then

K(EY=Klee)+ Kle. e)+Kle, e,)+Kle,, e)+K(e, e,)+Klc, e,).
Consequently K(e), e)+K(e], e,)+K(e, e)--C", i. e. M, is a space with a constant
3-curvature.

The following theorem has been proved in [4].

Theorem. Let M be an n-dimensional Riemannian space and 3s=m=n—2.
Then the sectional curvatures (2-curvatures) are expressed by means of m-curvatures
as follows:

'm -1
(1) (Q)Knc --1.7‘:5;-.42[(""""""\" ms2 T (m') )K“- Sm+2
_[m=2 Y ’ ) p) S, . ,
( D) ,)(-1;‘.1;m¢2l\” o b .m«.+~‘;‘__‘m.1KL sul ...m+?)

19 Cepaunxa, k. 3
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~

where K., is the sectional curvature of the section {u,, u,} and K, .. ... m+2

is an m-curvature of the linear subspace spanned by u,, Uy, ... W, |, Uipys .oy Uiy,
Ujsps -+ oy Uiy U € T(M), ie{l, 2,...,n}
That is why M, is a space with a constant sectional curvature — C,. Moreover

from (11) for m=3 and 5 we have
Cy,=1/3C".
Similarly we can prove the assertion that M ¢ CHy.
In the same way we can obtain the following theorem:

Theorem 3. Let M ¢ CHy, p=6 (resp. M ¢ CHy, ¢ =6) and K(E*)=C" (resp. C)
Then M, (resp. My) is a manifold with a constant curvature C, (resp. Cy) and

Ci=1/6C", Cg=1/6C".
Finally, we have

Theorem 4. If M¢ CH, p=6, =6, then M is flat.
Proof. The assertion of the theorem follows from (10), theorem 2, theorem 3.
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