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ESTIMATION THE ORDER OF MARKOV CHAINS L
AKAIKE'S INFORMATION CRITERION FOR THE CASE
OF DISCRETE-TIME MARKOV PROCESSES

IVA P. CANKOVA

The present paper deals with an information approach to the problem of parameter estimation for
the statistical model of a discrete-time Markov process. It is assumed that the process is stationary.
The complete set of regularity conditions is determined. The notion of Kullback-Leibler's mean infor-
mation is introduced for the case of Mirkovian dependence. Some of the main properties of that enfor-
mation quantity ore obtained. An extention of the maximum likelihood principle and a minimum pro-
cedure of taking decision are proposed for solving the problem. A strict derivation of Akaike’s infor-
mation criterion is stated. This criterion is applied to determine the order of irreducible aperiodie Markov
chains. A slatistic AIC(/) is suggested and the asymptotic behaviour of AIC estimator is examined.

0. Introduction. A brief historical review of the problem of determination the
order of a Markov chain shows that there are three important approaches to the sub-
ject, namely the likelihood ratio, the chi-square and psi-square ones, well known now.
In the introduction of Tong’s paper [8] is well-pointed out their close relation to the
classical Karl Pearson’s chi-square approach of contingency tables. Even the existence
of Kulback's monograph [12] suggests that new view to the subject applying informa-
tion quantities. Akaike was the first who decided to harness to a team these ideas
and proposed a procedure (resulting in now wide-spread Akaike information criterion
AIC) for parameter estimation, avoiding the complications of the conventional stati-
stics” approach. In his fundamental work (1] preserving methodologically heuristic spirit
Akaike stated (on p. 277) “...following the approach of Billingsley [4]), we can see
that the same line of discussion can be extended to cover the case of finite parameter
Markov processes“. On the other hand Billingsley [4] or [5] stated that discrete-
time Markov processes model (TDMP) is large enough to include the Mann-Wald
theory. We have to state that really most of the followers have extended the applica-
bility of AIC to the problem of estimation the order of autoregressive processes (ARP),
and autoregressive integrated moving average processes (ARIMA). For that reason we
say wide-spread AlC.

The first work connecting the subject with AIC, i. e. applying that criterion to the
case of Markov chain is Tong’s paper [8]. Later Katz [6] arose the idea for treat-
ment including the Bayes’ approach.

Our intention is to develop the information approach for Markov process inference.
We determine the precise regularity conditions for the statistical model of TDMP (§ 1,1)
and define Kullback — Leibler’s mean information for the case of observation with
Markovian dependence (§ 2, 1). Also we extend Akaike’s line to cover the case of
TDMP (§ 4, 1). For irreducible aperiodic Markov chains AIC(l) statistic for determina-
tion the order of the chain is suggested and the inconsistency (rather the overesti-
mating of the true order) of the AIC estimator is shown (§ 5, I).
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The second part of the paper is devoted to the Bayes’ approach to the subject,
the main properties of BIC estimator and to a reflection of the optimality in a certain
sense of both the proposed estimators,

Our collaboration with molecular biologists in the recent few years suggest us the
interpretation of a DNA molecule as an irreducible aperiodic Markov chain. Two reasons
fixed our interest to the information criteria. First, the possibility of their precise ma-
thematical examination applying them to determine the order of Markov chains, and
second, their easy computer realization. The last possibility was announced earlier in [10].
The results obtained in [10] show good concurrence with the evolution theory. More-
over, the present paper illustrates the development of some techniques and problem
solving necessary for the practice of another science.

1. Regularity conditions for TDMP. Let {X,, n=1, 2,...} be a stochastic pro-
cess on the probability space (Q, #, #) with values in the measurable space (X, 7).
Suppose that the family of the probability measures is parametric, i.e. 2={Po, 0¢©},
where in general © is an open subset of r-dimensional Euclidean space E". We assume
the following specific conditions.

Al.l. For each 0¢©, {X,},-1 is a Markov process with stationary transition mea-
sures po(&, A)=Po{X,1, € A| X,=E}, po(E, A) is a measurable function of & for fixed
A¢F, and a probability measure on F, for fixed &.

A1.2. There exist a unique stationary distribution pe(-) on &, such that pe(A)
= [xpe(dE) pe(&, A) for all A¢ 7.

In order that likelihood functions exist we assume some additional conditions.

A2.1. There is a measure . on # , (not necessarily finite) with respect to (w.r.t.)
which all the transition measures have densities f(&, n; 0), i. e.

po(& A)= [f(E n; Or(dn) for all AEF,.

A2.2. For a computational device we assume that pe(-) is the initial distribution
with a density f(§; 0) w. r. t. A

A.2.3. The functions f(&; 0) and f(&, n; 0) are measurable on the Cartesian pro-
ducts (X< R") and (X< XX R"), supplied with product o-algebras, respectively. For R"
Borel o-algebra is assumed, for X is # .

Then we can rewrite Al.2. as

(1.1 f(n; 0)=‘\ff(€v n; 0)AE; OAET).
Let us use the following notations

g(E n; 0)=Inf(& n; 0). f(& n: 0)=0f(E, n; 6)/08,

for the partial derivatives of f and Eo{-} for the expected value when 0 is the true
value of the parameter and po(-) is the initial distribution.

Comment 1. It is obvious that all conditional probabilities and expected va-
lues Eo{-|x,} are determined by the transition measures. Thus the initial distribution
has no effect on them.

If some observations of the process (x,, Xg ..., X, X,.) are at one’s disposition
it is easy to show that the likelihood function based on the observations is L (x,,...,
Xpsrs 0)=f(x,: OV, f(x, x4, 0), except on a set with measure zero w. r. t. the
(n+1)-fold product measure of A on the o-algebra #7+' Then the log-likelihood of
the observation is [,(0)-=Inf(x,; 0)+Z/  Inf(x, x5 0)

Now we are going to state the regularity conditions, local in character, well stat-
ed by Billingsley [4]
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Cl.1. For any &, the set of n for which f(¢, n; 8)>0 does not depend on 6.

C1.2. For any & and m, there exist third-order continuous partial derivatives of
densities throughout ©. Then g(&, n; 0) is well defined except on a set of p(g, -3 0)-
measure zero and 2,& NM; 0), Zuol& M3 0). Luowl(& N3 0) exist and are continuous in ©.

C1.3. For any 0¢© there exists a neighbourhood T of 6 such that for every u, @,
w(=1, 2,...,r) and & the following conditions hold:

R VACR HOIICLIESS

(1.2) [59P5¢ 7y fuo (& M3 B) M(dM) <o,

~
|

E, {Supo“'{ Ty | Luvw (Xl' Xg3 0) } .

Let also for u=1, 2,..., r we have
(1.3) Eo{| gulxy, x93 0) <0
and the rxr matrix X(0)=0,,(0)|, where
(1.4) 0o(0)=Eo {u(x1, Xa3 0) Zolxy, X253 O},

is nonsingular.

We need to impose some further conditions to ensure that the law of large num-
bers and the central limit theorem can be applied to the random vector n—'2ZX7_, g(x;
X413 0), u=1, 2,...,r independently on the initial distribution.

C2.1. For any 0¢O, the stationary distribution pe(-) is such that for each ¢ .JX,
pe(E, -) is absolutely continuous w.r. t. pe(-), i.e. pe(E, -)<pol-).

C2.2. There is some 8>0 such that for u=1, 2,...,r

Eof guxy x5 0)P+8}<oo (8 may depend on 0).

It is obvious that £(0) is positive-definite for each 0, but we need also

C3. £(0) is continuous for any 6¢©.

Comment 2. It is easy to realize that under the conditions (formulated such
that the initial distribution pays no role) Inf(x,; 8) in L,6) is dominated by the
other members for sufficiently large n (the information about f(§; 6) does not increase
with 7). So for the purpose of the large-sample theory we could redefine the log-
likelihood function as

(1.5) L(6)= £1 2Ax Xisy3 0).
o

It is useful to think that for each 0 all the mass of the initial distribution is concen-
trated at the point x,.

The process {X,}.-1, the corresponding transition densities f(, n; 0) and the range ©
of the parameter 0 form the triplet [X,, f(§, n: 6), ©] which is called a model. The no-
tion of a model will mean that {.X,}.. is subjected to conditions and assumptions de-
scribed above.

Comment 3. We assume that the process is actually governed by the densi-
ties corresponding to the true value 6°, 6°¢©. The model specifies nothing about the
initial distribution so the hypothesis that 0° is the true value is a composite one.

Further, our attention is focussed on the inference for a Markov chain even mul-
tiple. As far as more general statements could be formulated for a discrete-time Mar-
kov processes, we would postpone the statement of the concrete problem.
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2. Kullback — Leibler’'s mean information for TDMP. It is well known that in
1951 Kullback and Leibler [7] published a generalization of the information
measure known as Shannon’s and Wiener’s one. It was Jeffrey’s establishment for the
first time that there is an analytic relationship between the generalized and Fisher’s
information measures. Moreover, log-likelihood ratio under fixed value of the random
variable is called information for discrimination between the statistical populations. We
are intended to determine Kullback's mean information for TDMP and state some lem-
mas analogous to those for the case of a single variable.

Let the model [X,, f(§ n; 0), ©] be given. So every pair (X, X,,;) consists of
dependent variables. Using the basic idea of the mean information measure, we can
determine that quantity for the dependent variables X, and X,. Taking into conside-
ration that for any 0,

Py{X,=5 Xo=n}=Po{Xo=n| X, =E}. Po{X,=E}
and fixing two different elements 0! and 6% in ©, we can express the information
quantity as follows
. 2% Pr Lo, JE N O SE; B Lo gy g
10402 Xy, Xp)=[[f&, ns 09In Do e f(& 00 Mdn) 1(dB).
Further for shortness we use the notations f/& m), fi(&) and /(1: 2; X, X;) in-
stead of f(&, n; 09, f(&; 0) and /(0': 0%; X, X)), respectively (i=1, 2). Thus

(12 23 X X)=[[£i(& min 2C0AE fi) 2 dn) Mae)

= [[[AE MINCAGE DIfsE MMADIAE) ME)
+ [ A FEAEN [ & MM ),

Since for each 0¢©
(2.1) Xf f(E n; 0)A(dn)=1

we can see that the second term in /(1: 2; X, X,) is exactly /(1: 2; X;), which is
the well-known information for discrimination between 6! and 62 for the initial state.
The integral within the brackets in the first term is usually determined as a conditional
information contained in X, when X,=& and is denoted by /(1: 2; X,|X;=E£). The
mean value w.r.t. the distribution of X, of the conditional information is called a
mean conditional information and is denoted by /(1: 2; X' X)). So

I1:2; X, Xo)=01:2; Xy X)+/(1:2; X).

Since /(1: 2; X,| X,=&), as a conditional expectation E,{ln%}éé:))lz\’ =£}, does not de-
pend on the initial distribution of X, ignoring it when §=.x, we find I(1:2; X))=0
(v, f(x;; 0)=1) and A1:2; X,, Xo)=/(1:2; X,|X,=x,) or generally /(1: 2; X,
Xy)=I(1:2; X, X)) (see Comments 1 and 2).

Lemma 2.1. For any pair (X, Xi,). of the model [X,, f(& n: 0), ©] the mean
(conditional) information satisfies the relation

(2.2) e 25 X | X)=K1: 2; Xp| X)) and K1: 2; X)=1(1: 25 X).

Proof. It is obvious that (2.2) holds because of the homogeneity of the process,
see condition ALl
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Thus the most important for the mean information quantity is the transition bet-
ween the states of the process, not the states themselves.

Suppose, A is the hypothesis that the parameter 0 takes a fixed value O, i=1, 2.

Definition 2.1. For the model | X, f(& n; 0), ©] we determine information
for discrimination between H' and H? when HY is true, contained in the transition
from the state & to the next one, as follows

I(1:2; Xy X1=E_)=‘\ff,(5_, ) In (f1(& M)/f(E n)) Mdn)

and mean information for discrimination (between ' and H? when H' is true) con-
tained in the transition between two successive states (of the process)
(2.3) I(1:2; Xy X))= \‘_.[(1: 2; Xy | Xy=8)f1(8) Md).

Analogously we can determine an information quantity for /41 dependent vari-
ables, rather than for /+ 1 consequtive observations of the process. Taking intoaccount

the Markovian type of the dependence, and hence the expression of the likelihood
function as a product of transition measures, we can write down

) N
U223 X Kppeoes X = f o J0i(0) In -G M) - My

where (1) =fi(&;) fd&p &jv1) - - -f1(§i+1—1' Sigr) i=1,2.
Lemma 22. (Additivity) If [X,, f(& n; 6), ©] is given then
I(1:2; Xy, Xy Xipy)=2[(1: 2; X5| X)+/(1: 2; X))
holds.
Proof. Indeed, we have

[(1 2', /Y, b 1Y /\,,.H)
= [ [ [ AONE WA O D8 Aaem@nnag)

= [1 A& ) in2E atdn)] £i(6) Mte)

(LA, I AED] £, () M)+ [ fi(EIn FE- %)
=/(1:2; X;| X;i—)+1(1: 25 | Xy | XH—I(I 2; Xim1)
Thus according to Lemma 2.1 we obtain
I(1:2; Xy, Xy Xy )=2[(1: 2; X, | X)+1(1: 2; X)).
The following result can easily be derived by induction.
Theorem 2.1. For the model (X, f(& n; 0), ©] we have
(24) I1:2; Xy, Aoy oo X)) =nl(1: 25 X3 | X))+ 1(1: 2; X))

This result justifies the choice of the log-likelihood in the sense mentioned in
Comment 2. It maintains it once more.

Definition 2. For the model |X,, f(& n; 0), ©] we determine Kullback —
Leibler's information quantity for discrimination between H' and H* when H' is true

(2.5) M1:2; Xy Xo)=1(1: 2; X,| X))
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Theorem 22. I(1: 2; X,, Xy) is almost surely positive definite w. r.t. . and
equality holds iff fi(& n)=fa& n) w.r. t. A

Proof. [(1:2; Xy Xp)= [1(1: 25 X| X,=DAEMAD) = [[ (A& WG4 fy

(2, M)/foAE, M) MAN)] F(E)MdE). Let us use the short notations w(Z, n)=/fi(& n)/fa(& )
and A& n) = [ fAE, Mw(E n)Inw(E, ni(dn).

It is obvious that
(26) \j fAE MW(E, n)r(dn)= ‘{fx(ﬁ' nA(@n)=1.

Take ¢(f)=tInt and substitute #=wy(§, n). Since o(1)=0, ¢'(1)=1, 0" ({)=1/t and
0<wy(E, n)<= w.rt A, we obtain for the Taylor expansion of up to the second
order term o(w(& m)=o(1)+[w(E n)—1] ¢'(1) +(1/2) [w(E ) — 1P¢" (k& n)), where
0<h(E, M<oo w.r.t. A and wE n)<hAE n<l Then for the integral J(&, n) we
obtain

JE m= [ ) [v(S n)—llk(dll)w'-(l,"?)_\_ffz(i- ) (W@ n)— 1212, M)
=(l/2)AJ [w(&, n)—1]fo&, n)/AE, 1) Mdn)=0.

Hence J(&, M)= [x fi(& m)Inw(E n)A(@n) =0 and equality holds iff w(5 n)=1, i e
fi& M)=fy& ) w.r. t. A

Comment 4. Since ©=F’, the inner product of vectors (8%, 6%)=X;_, 0; 67 and
the length of a vector |0'—02 =(0'—02 01 —02)!2 are well defined. The matrix
$(0)= 0,40)|| is nonsingular and positive definite for each 0. In accordance with
Comment 3 let us fix £(0°)=2 and treat £ as a positive definite operator. Thus the
inner product caused by X, (8!, 0%)r=\Z0' 0?), the norm | 02 =(X0, 0)=(0, 0)x
and the distance p(0', 0%)=| 6'—02 |z are also well defined. Further, we shall use both
the inner products described above.

Theorem 2.3. (Relationship between Kullback — Leibler's and Fisher's infor-
mation measures). For a given model | X, f(§ n; 0), O] the following representation
holds

2.7) 100 00+A0; X, Xg)=(1/2) |A0 ;.

Proof. Since the model satisfies conditions Cl it is possible to differentiate
under the integral sign and since (2.1) holds

'qu(xiv Xit15 OMdx;41)=0 and l{f(xl' Xis ) (fulxn x5 9)/f(xs Xis1s 0))M(dx;41)
’::‘If(xl' Xip1s 00Xy Xipy s OMdX4y)= Eo{g.(xt, Xis15 0) x}=0.

Hence
(2.8) Eo{gx,, x,; 0)}=0 for each 0¢©.

Differentiating (2.1) twice (permissible by Cl) we obtain [x fuo(Xis Xig1s OMdx4)
=0, It follows that

Eo{guofx1, Xa: 0)| X} = — Eof&u%1» Xa: 0)g.(x1, X35 0) | x,}
and therefore
(29) Eo{g:w(xv X35 9)}2 _cuo(e)-

lLet 7, be the neighbourhood of 07 satisfying C1.3. and denote by G(x, x,),
= SUP§, 1. Kavw (X1 X3 0)[. Then C1.3. implies the existence of a constant M such that

(2.‘0) E." G(x,. XQ)-—— M<\—'J.
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Consider Taylor expansion in 0¢7, of g(x;, x,; 6) around 6°

(2.11) In (g(xy, xq; 0)/8(xy, Xq; 0°)= é‘(e,-—ef")g,(x‘. Xp; 69)4+(1/2)

KT (0,00, —00gelr X5 ©)+(13) T (0,—00X0, —63)
1 u,v,w=

u=1 v=
X (0 —09)guonl X1 X33 01)

where 0! is between 6 and 0° all in 7.

By the mean value theorem the remainder R is rewritten in the following form:
R=a|0—0°3G(x,, x,), |a|=r%6. By condition Cl integrating both the sides of (2.11)
w.r. t. 02 and using (2.10), (2.8) and (2.9), we obtain

Eo{In(f(x, x5 0°)/f(x,, x2; 6)}

(1) E (0,00 (0,00, +0(|0- 00
ua=1 v=1

Omitting the members of higher order we derive

, Xy O
Eo{InZ22000 joo: 0; X, Xy)

ey xe5

~(1/2) £ % (0,—00(0,—0)0,,=(1/2) | 0—0°|2.
u=1 v=1

Finally if put 0=0°4+A8, then the last relation can be rewritten in the form
1(00: 0°+A0; X, Xy)=(1/2)] A0 3.

3. Extension of the maximum likelihood principle for TDMP. It is well known
that the classical maximum likelihood principle (MLP) is utilized mainly in two bran-
ches of statistics — estimation and test theory, where log-likelihood function (LLF),
i. e. (1.5) instead of the simple one, is often preferable and the intention is to find
out all the solutions of the equations

@3.1) B L) = T glx Xz 0)=0, u=1,2,..., 7.
u =1

These solutions are called maximum likelihood estimators (MLEs). For the model [X,
f(& m; 0), © Th. 2.1 in [4] quarantees the existence of a consistent MLE of the true
value 0°, Because of the local character of Cl1, MLE is a local maximum of L,(0) with
probability going to 1 as m—co and is the only consistent solution in a neighbour-
hood of 06° with probability one as n—co. If the dimension of the parameter is known,
then MLP provides good estimators. The principle does not however apply if we want
to estimate the parameter without knowing its exact dimension and if we are intended
to estimate that dimension, too. It is clear that another approach is necessary. Such
one is so-called extended MLP proposedby Akaike [1]and closely related to the in-
formation quantity.

It is well recognized that the statistical estimation theory can be organized within
the framework of the decision theory by choosing a proper loss function. Further we
are going to state in details the EMLP and finally to establish its main essence as a
general estimation procedure based on the decision theoretic considerations.
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1. According to condition Cl the function g(.X;, X,; 0) is well defined for each 0
and if X,=x, and X;=x, (x; and x, are arbitrary states from .X), then we can exa-
mine g(X,, X,; 0) as a random function.

2. Let © ;.{6} be a set of the values of the estimators of 0. Since every esti-
mator 0 is an # -measurable function, 0: X0, then ©—0.

3. Considering the expected value of g(.X, Xj; 0) (where X, and X, are from
the model) we can determine the expected log-likelihood, i. e. */(§)=E3Ln(6).

4. On the other hand, 0 is a statistic with its own distribution. Then we can de-
termine the expected value of y(b) w.r. t. the distribution of .

Akaike has stated his EMLP briefly as follows: among a lot of estimators choose
one which will give the maximum of the expected log-likelihood function.

Note that the maximizing of v(0) is equivalent to that of the information quantity
Eo{In(f (X, Xoi 0)f(Ny, Xy 0))} which is exactly (—1)x/(0: 0; X, X,) defined in
part 2. By this interpretation it is natural to maximize y(@) since it is equivalent to
shorten the “distance” between the estimator and the parameter 0.

Comment 5. If we consider the following statistic 'w(9°;5):—(2/n)2;’=|ln(f(/\',.’
Xig1s a)"f(/\’/, X415 09), then we have lim, .. w (0°; 0) = 2/ (6°: 0; X, X,) a.s. Here
we apply the strong LLN, see Th. 1.1 in [4]. Then it is natural to expect that for
large n the estimator providing the maximum of L,(0) will minimize the distance to 6°.

Thus such an approach can be viewed as an extension of MLP, also taking into
consideration C1.3 and (2.8).

Regarding the essence of the proposed extension it is natural to determine the
information loss function

Xy Xy3 0) )

(3.2) Wieo; 0) = 21 (0: B Xy, Xp)=—2En {Infgigtigs

and the corresponding risk function

(3.3) R(0°; 0)— E~W(0°; )

w. r. t. the distribution of 6.

4. Akaike’s information criterion for TDMP. [From the discussion above it be-
comes clear that there is an open problem concerning the point how to get reliable
estimates for W(0°; 0) and R(0°;0). A solution resulting in AIC unifying MLEs and
the corresponding log-likelihood ratio statisticsis proposed by H. Akaike [1] for the
case of independent observations. We extend that technique to cover the case of TDMP.

Let ,© denote a k-dimensional subset of © with a generic point ,0 which means

that 0y = 4Oxpa=---=40,=0.
A4.1. We assume that 0°= 0° i.e. we shall omit the subscript r of the value 6°

or of any point of the original space ©.
From the relationship (3.2), (2.7) and C3 it follows that W(0°; 0) is smooth near 6°,

Also from Th.2.2 we obtain that W(6°; 6)>0 for 0-0°.
A4.2. Suppose that W(0°; ,0) has an unique minimum at ,0° given by
(4.1) W(0°; ,0°)= |0nine wi(oo; ,0).
k k
Lemma 4.1. For an arbitrary 0¢© we have W(0°; 0)=|0—0°|3.
Proof. The statement follows from (3.2) and (2.7).
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Thus the only minimum ,0° of the loss function over the subset ,© is determined
by the relation
(4.2) || 40°0—0°]2 = l;l(innl"e—-ﬁ“
k k&
This means that the vector ,0° is the projection of 6° on ,© w.r.t. the metrics
caused by X, i. e. (0°—,0° ,0—,0° =0 and consequently it is obtained from the
system

%

3 r
(4.3) I 4000,= X 000, 4=l 2.k

Let us denote by .0 and 0 the MLEs for ,00 and 6°, respectively. In these terms
the loss function at ,0 can be written in the form

W00 0)= 0= 08 = |,0—,004 00 —00

=1 ,0°— 0, “?‘2 + || 20— 0018 +2¢ 00—0°, ;é_keo)L
But the last addent is zero since

—~ k —~ r
(4~4) (40°—0° 0—,00)r = 21 (10— keﬁ)[ z . (;92— 92) cnv] =0,
u= =

Lemma 4.2. For the true walue ©°, its projection ,65 and MLEs 0 in ,© of
the model (X, f(& n; 0), O] the following holds :

(4.5) 0—001F = | ,0°—00 3 + ] 06— 0%
Now consider two sample statistics, ,w, and ,n,, where
9 3 1 L i Xie1s 40)
v,=—2/n T In’L oY 3
(4.6) *r n =1 fxn X415 8)
N, =X RW,.

The fact that ,0 and 0 are MLEs leads to the equations

O L@ E gt X 0)=0,
u i=1

] 2 “ a

90 Ln(ke)z z gn(xi’ Xit1s ke)zo'
u i=1

If we expand the function g(x;, x.,; ,0° around ;6 and take a sum up to n, we
find

(4.7) I 8xp Xip1; 40°)

i=

= T gl %5 0)+(1/2) T (O, —00Vn(0, —,00)

XM T o (X Xigrs O+ Ry
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Analogously, around 0,

iEl &(xp Xip1: 46°)
= T gl X3 O)+(1/2) X (O, —,00Vn (0, — 400)
X(Un) X guilxe Xivri )+ Ry

where
k k k

Ri=(—1/3) X X z‘(ke,,— £0° )(,,() — 90)(,,9 —40%) Z Luow(Xiy Xigrs 01)

u=1 v=1 w

Ry=(—13) X X Zl(fh— 499 (0, — 409) (6, —02) 2 BuvalXis Xig1: 0

u=1 v=1 w

and 0 < 0'<,0°, 0<02<, 00

We want to examine the behaviour of R, and R, applying Cl1.3. It is possible to be
done in case that © and 9 are in a neighbourhood ,7, of ,0° On the other hand,
0 is a consistent estimator of 6° (Th.2.1 in [4]) and hence for sufficiently large n,
0¢T, (a neighbourhood of 6°). If | 7=,T,01 T, then for sulficiently large » the expan-
sion under C1.3. is possible iff 6 6¢ 7 and also (00 00¢ T, ie. it implies that £0° and 06°
have to be close. If we denote ,,G(\:,, Xi+1) = SUPF 1 | Buow (X5 X413 )| and m Eq{,G
(x,, x,)}, and apply the mean value theorem we obtain

Ri= X ,G(x; x;+y)af 20— 4008,
i=1
Ry~ JG(xp X000 |8 003, where |a|-=r¥6.

Since the law of large numbers holds (Th. 1.1 in [4]) then P—lim,..{(1/2)Z}_G(X,
Xi41)} =M and because of Th. 2.2 in [4] quarantees that | 'n|,0—,0° is bounded in
probability as # — o, or equivalently |7 | 0 —40°} is of order O,(1).

R,- ('/”)i?l xU(x;, Xi+1)“{\«/ n| ka"‘keo l}“‘/\r’"7 e R~ 0,,(1/\/&)

or also we can write that Ry =o0,(1). N
Comment 6. Th. 2.2 in [4] states that if [(n)=\n(0 — 0) (like a vector) then

I(n)—iwf‘(O. £-1. The symbol ~%+ means convergence in distribution. Therefore
I(n) = Oy(1).

Analogously we establish that
Re= l,"‘”lzl WU(x, xppy) afyn 1’6—‘*00$ ol Vn, i e Ry 'Op(l/V’;)-

Smce\/mo— 00 \n |00 + yn ,0°—0° is of probability order O, (1). Indeed the
first term is sub;cute(l to Th. 2.2 (4] but for the second one (4.3) holds. Finally

Rﬂ‘ p(l)
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Comment 7. Using the statement of Corollary 3in [9] we verify that (since
10, 0,,00 0°€ T andy/n(,0—,0°) = O,(1), Vn (0 — 409 = 0,(1)). Indeed, R, = i 0,(1/n)
=no0,(1/n), Ry=no,(l/n) and hence R;=o0,(1), Ry=o0,(1). Further we use “~” to in-
dicate the asymptotic equivalence in probability.

Let us now discuss the asymptotic behaviour of the second terms in (4.7). Since
P—lim,,..0=6° C12 and LLN from Th. 1.1 in {4] hold, it is easy to see that
P—lim,,o(1/n)Z7_| 8o (Xi Xizys 0)= —o,.. As was just mentioned above \/;(3,,—,92)
=0y(1) for u=1,.-.,r. Thus

(1/2) uzl El v (0, — kO:) \n (99—1.02)(1/") ‘_}:‘ Guo X1y Xig1s ’é)

~—@2) £ E @, — 0 0= 0,0~ — (1/2) 0,0 3.

Analogously for the other second term we take into consideration that P—1limpe.,6(
=40% C1.2, LLN and C3 for £(0) and conclude that for close values ,0° to 60,

P—lim,,.(1/n)Z7_| G0 (X5 X413 k@):—c,,,,. Thus from (4.7) we obtain
. f(%Xi Xit1; #9) Ty | a
(4.8) -—2(51 In }(_xﬁie)_ ~n|08—,0°(3 —n|l 0—,0°3.
The left hand side of (4.8) is exactly ,n, and hence the following result is valid.
Theorem 4.1. For the model [X,, f(& n; 0), O] we have the relation
(49) W ~n [ 0—,0013 —n | 6—40 2.
By a simple reflection we derive another result.
Lemma 4.3. (Geometric interpretation) ,0—,0° is approximately the projection

of 8-0° into 0.
Proof. We have

(] \ ;) 'Xl gu(xﬂ x.‘+l 5 kOU)
k I ) n - ,
== X Vn(0—00X1/m) T ol Xirrs SO+ R

= ‘Dy}-‘-l \""7(0:;—;(93)(1."”) ‘zl 8uek Xir Xit13 0)‘*"32

It is easy to show that the remainders R are n times the term (1/yn)o,(1/yn) and
therefore R =no,(1/n)=0,(1), i=1, 2 (see Comment 7). Hence omitting the remain-
ders we can write
k I r —
T n(0,—,00)0,,= I VO, — 000, u=1,...,r.

1 v=

Since (4.3) holds for u-==1, 2,...,&, then
k — r —
(4.10) = \’"(kov—kf’f.’.)ﬁwja Vn(8,—00)a,,.

20 Cepauka, xu. 4
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We can express ,n, in another way too, namely,
No~n | 0—,004+00—02—n] 0—,002
—n | 0—00 2 +n ,00—0° 2 — n ,0—,00|2—2n(H—0° ,8°—0%)x.
For the inner product we have

(4.11) n6—69, 0—00s=n X £ (0,— 0960300

u=1 v=
k S ¢ ~ — ~
—E W T (0, — 09)0,.) Va(H —00)=n(,0—,0°, 16°—6°):=0.
u=1 v=1

It is natural to expect that (4.11) holds because of the geometric interpretation
we have given. Thus

(4.12) Mo~n| 0—00 1240 ,00—09(2 —n | 0—,00 3.

Theorem 42. The log-likelihood ratio statistic ,n, has asymptotically the
non-central chi-square distribution with r—k degrees of freedom.

Proof. For the first term in the right side of (4.12) we have n|l@—9°|g§
~ 2[L,(0)—L,(6%)] and since Th.2.2in[4] holds then n ’[§——0° 2]22_’1_.13. Also applying the
projection theorem Th. 11.2 in [4] we obtain that n| k@—.9°“§_"..x‘2k. These conclu-

sions can be derived also from Th. 3.1 in [4] whichquarantees the independence of the
limit distributions. But that independence holds since the geometric interpretation we
gave. Th. 3 in [9] implies that N, —s %2, The second member of (4.12) is n| 00—0°%
It was mentioned above (regarding the remainder R,) that this member is of order 0,(1)
(because of (4.2) or (4.3)). So it gives nothing to the asymptotic distribution of ,n,
except to show that there is a shift. Thus for fixed » the noncentrality of 2 _, is

determined by 7/ ,0°—0°|%. We suppose that Tong’s quotation on p. 492 for (4.12) is
unproper, the Theorem on p. 16 [4] ensists on requirements which are not satisfied.
Thus from (4.12) we derive
oy~ 0—0012 £ n],00—00124n 0,002 — 2n 06— 00|}
=n| 0002 + n|| ,0—0°)2— 2n| 06— 602
or equivalently,
W (00 )~ n~t (n,—nl|0—091% +2n 0,00 3).

Thus for the loss function we found asymptotically equivalent statistic in proba-
bility. But it seems easier to minimize the risk function. Indeed, let us apply the ex-
pectation operator to both the sides w.r.t. the distribution of the estimators. So we

obtain a proper statistic for R(6°; ,0), i. e.

r0; 0)=n"" (,+2k—r).

_Definition 3. The value k which provides the minimum of the statistic
r(0; ,0) is called Minimum Akaike Information Criterion Estimate, denoted usually
by MAICE.
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Since r and n are fixed for any observation then we come to the next result.
Lemma 4.4. The following functions are equivalent forms of the risk statistic:

Fl. Ry(k)= —2 il I f(X, X5 40)+ 2k

F2. Ry(k)=n,+2k.
F3. R(k)=m,—2X(d. f. of n,).

Proof. Everywhere n is omitted. To the last form —r is added. The equivalence
is obvious.

For the purpose of investigating the order of a Markov chain the most conve-
nient form is F3. We are going to discuss it in the next section. Before that, let us
consider a natural extension of Th. 3.1 in [4].

Suppose the model [X,, f(§, n; 6), ©] is given. Take a sequence of open subsets
0,, 0,,...,0, of Euclidean spaces E'i,i=1, 2,..., v, respectively, and r,<r,<---<r.

Foreachi=1,2,...,v themapping%s: ©,— O, satisfies the following regularity con-
dition. (We denote by ‘0 the generic point of O, i.e. if ®=(‘0,,...,6,), then ‘4('8)
=i19 and ‘R (0)="t0;, j=1,...,r4; i=1,...,v, also ©,;,,=0.)
C4. For each j=1,...,r, ‘4; has continuous third-order partial derivatives and
o'h, (0
the r,,,Xr, matrix K(10) with entries {K(0)};= -j;,{(—)()nj=l, e Ty =100, 1
{

has rank r; throughout ©,

By Th. 3.1 in [4] follows that all the models [X, f(& n; 0), ©,] satisfy conditions
C1 and C2. Moreover, *10°=i4(‘0°) is the image of the true value of the parameter,
00 = vh("0%) = "h("— A --(H(0°))-- )

Theorem 43. Suppose ©,, O,,..., 0, are the subsets described above and
the mappings ‘h, i=1, 2,...,v satisfy C4. If the true parameter point lies in ©,,
then

d

(4.13) 2[maxe, L,—maxe, , L,] o I £b Y

1
(4.14) 2maxe, L,—L,(®)-—12, i=1,...,v.

Moreover, the v statistics
(4.15) 2[maxe, L,—L,(*0°)], 2[maxe, L,—maxe, L], i=2...,v

are asymptotically independent.
Proof. Since Th. 3.1 in [4] holds, then iteratively for each i=1,..., v—1,
®=0, and ©=0,, and hence

d . d 2
2[maxe,  L,—L)]— xf‘_ " 2[maxe L,—L)] — 17

d
‘ 2
2[maxe, , L,— maxe, L,|— Xr gy =y

The last two statistics are asymptotically independent. Immediately it follows that sta-
tistics given by (4.13)are asymptotically independent, see Th. 11.2 in [4]. For a fixed i,
D V)

Sy ve ey

2[maxe, L,—Lj]=2[maxe L,—maxe, L,]+2[maxe L,—L°%)
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=‘l£ Q[maxei L,,——maxel. , La]+2[mazxe, L,—L9),
j=2 -

where every addend is x* 1 and all the addends are asymptotically independent.
Therefore, 2[max91 L,,—L?l]l islasymptotically independent in regard to statistics of (4.13),
i. e. the statement for the statistics given by (4.15) is valid.

5. Finite discrete time Markov processes. Let us discuss the case when X is
finite and TDMPs are called Markov chains. To simplify the notations we shall denote
the state space by the first natural numbers X={l, 2,...,s}. Here the measure % is
the counting one. Instead of density functions w.r.t. 2 we shall use the transition
probabilities p ;(0)= P{X,.,=j | X,=i}. They form a transition matrix P(0) of size ss.
so the model can be rewritten as [X,, P(0). ©]. It is easy to see that conditions ClI
and C2 are simply consequences of the following one.

C5. The set D ={(i, j): p6)>0} is independent of ® and anv p«0) has conti-
nuous partial derivatives of third-order throughout ©. Moreover, if & is the number
of elements in D, then the dXr matrix

(5.1) 1%/"/(0); (i, ))¢D, u=1,..., r has rank r throughout ©.

A3. We shall consider only Markov chains which are irreducible and aperiodic
and such that every recurrent state is nonnull.
The log-likelihood for the observation (x;, xo ..., x,:) is

(5.2) L(0)=Zpn;1npy,(0),

where
n‘_/- = [Z'.l 1,\'1 (l) IXI 1 (")'

i. e. the frequency of the transitions from state / to state j (/y (i) is the indicator
function of the event that /-th member of the observation x, takes value /). Note that

L p0)=1, then X, 03 pi/0)=0 for each u, i=1,...,s (since the matrix (5.1) has

rank r) and consequently 7 -d —s. The stationary transition probabilities can be
estimated by maximizing (5.2) w.r.t. p; subject to restrictions p, -0 and Xj_, p;=1.
Using Lagrange multipliers we obtain that MLEs are p,=n;,/n, where n,=X5_ n; i e.
the frequency of appearance of state /. The above is done under the interpreta-
tion of © as “equal” to D (p. 26 [4]). Thus the hypothesis ©(0) is that the process
is a Markov chain. When we concern of testing a composite null hypothesis ® within
O - D, then C5 is generalized to C5.2 in [4].

The above reflections are explicitly given for simple Markov chain, i.e. for a
chain of order one.

Definition 4. A Markov chain is said to be of order t if the following
equation relating the conditional probabilities is satisfied . t is the smallest positive
integer such that for all n,

P{’\,n“\’n -1’ ’\,n P AR } P{Xn ‘ '\,u 1 ‘Yn E AN ‘\'n /}'

-

Definition 5. The chain is said to be of order O if it is a sequence of in-
dependent random variables.
If {X,} is a #th order Markov chain, then its transition matrix is P=(py ...v v, )

where for j - 1,..., ¢+ 1, ve{l,..., s} Here Popooovyivg, >0 because of condition (A3).
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It is possible to give a similar interpretation: so d=s't*'" and MLEs are ;J\-l___vt: Vi
n,

oMYy The LLF s

'RERAT

L, £ n, ... In—t—r=t
"l"'\‘l'l Vyeee Yy

where n\" ceev, T E\'I' n\‘l. eV Yy

In[4,5]Billingsley has shown how a z-th order Markov chain can be associated
with a derived process and the last one can be expressed as a first order process.
So most of the theorems concerning statistical inference for simple Markov chains can
easily be extended to the case of multiple ones.

If we denote by /), the hypothesis that {X,} is a ¢#-th order Markov chain with a
regular transition matrix, we can generalize condition C5.2 in [4] 4o the following one.

C6. For each ® in open subset ®=E", P(®)=(py, ...v,:v,.,(®)) is a t-th order
stochastic matrix with positive elements. Each element has continuous third-order par-

tial derivatives and the s*'>c¢ matrix with entries 0‘;—- Pooooviv, (@) j=1,..., ¢has
" ;

"
rank ¢ throughout @.
Then it is not difficult to see how to use Th. 43 and derive a generalization of
Th. 6.3 in [4] for a ¢-th order chain.
Theorem 5.1. Suppose C6 is satisfied and {X,} is f-th order Markov chain with
transition matrix P(®°) for some ®’¢®. Then for any fixed m,

L,)—2y2 t1=i=m,

9 .
2(maxyr, L,—maxsy, _ (simsi=s-1)

1

2[maxy;, L,—maxe L,] —I—'y_:‘,x_l .
and the statistics are asymptotically independent. If ® consists of a single point, i. e.
there is no parameter to be estimated, then ¢=0. In this case the statement about the
last statistic maintains that one in Th.6.1in [4]. If ® is such that ®=H,, then c=s—1.

Returning to Section 4, we see that the definition of ,n, as a log-likelihood ratio
statistic (closely related to Neyman — Pearson criterion) implies that

d
-9 -— 2
1).‘." &N, = -[maxum [,‘,.~maxul L,,] K(J,,,-l_“,,,)_ sl+1sl),

where r—sm+! —sm, k—=s/*1 —s' and using the notation s/=s/*'—s/, we have

or %?

K d 2 p
—y2
*m xum (-.-‘.m_z;-_‘l’

—sly(s-1)
Then using F3 form of the equivalent representations of the risk function (Lemma 4.4),
we determine the statistic

AIC() = Ap—2(78™— 78"
or the so-called Akaike's Information Criterion and redefine MAICE.

Definition 6. AIC estimator | Tac of the order of a Markov chain, the so-
called MAICE, is chosen such that

AIC(H= | min AIC (1)
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Theorem 5.2. Let the true order of the model [X,, P(0), ©] be known and
denote it by p. Then MAICE | is inconsistent estimator of p,i. e.
lim P{{=1}--0, if 0=I<p,

lim P =1}>0, if p<i<m.

Proof. Let 0=</<p. Then
P{l—1}=P{AIC (/) AIC(j), 0<j<m—1}
< P{AIC (l)=AIC( p)}.

Since Th. 5.1 holds, then under any alternate hypothesis /, the test &= AIC({)—AIC(p)
is consistent (i.e. it degenerates at --, see [3]). Thus the above probability can be lessen
to an arbitrary positive number, or equivalently lim,.. P{{=1}=0.

Now let p=</<<m. Then

P{l =1}~ P{AIC() = AIC(j), 0=j=m—1}
~P{AIC([)=AIC(j), p—=j=m—1} (since the above)
— P{AIC(1)=<AIC( ), p=j<l and AIC()=AIC(j), [<j=m—1}.

For &,=AIC(,)—AIC (), p<j=I[—1, since Th. 5.1 holds, we obtain that §;=A,—2(s
—s/)(s—1) where ;2, is chi-square distributed with (57s'— /s/) degrees of freedom
For &,= AIC(l)—AIC( j), [~ j<m—1,applying Th. 5.1 again, we obtain that &;=A;—2(s’/
—s')(s—1) where ; is chi-square distributed with (" 's/—7s') degrees of freedom.

For any p<j—<m—1 we can express &, as a sum of independent identically chi-
square distributed random variables with one degree of freedom. Indeed, let Z,, Z,, ...
be i.i.d. x} and put §, =%%  (Z;-2).

If i=j—p+1 and thus 1-—=i<m—p, by using the notation a,= </ s**tr=lgs!
=@;_p4y- Then for 1<i<=m—p Vstr=1 -a, 'sl=a,_,4y, andin details for 1<<i<l—p
4y a, =0, for [—p+1<i-m-p we have SZ‘, ~Sa, = 0. Note that g,
<@_p4y for 1=i=l—p and @, =a,_p4y, l—p+1=i=m—p.

Finally
P{l=1}=P{AIC ()< AIC (j), p=i<! and AIC(\)==AIC()), [=j=m—1}

— P{S, —8a,=0, 1si=l—p and Sa; - Sa L =0 l=p+1=ism—p)}.

This form is similar to that one obtained for the case of independent
observations, see [2]. Moreover, there it is possible to find out an explicit formula for
the above probability, solving a random walk problem and hence to find explicitly
the asymptotic distribution. The analogous problem arising here for not identically
distributed random variables has no apparent analytical solution. Anyway, avoiding that
exact form, we gave a similar representation to that onc in the case of independent
observations in order to point out the relation between them. We think that it is
easier to realize that the left hand side probability is positive one (since the distribu-
tion of the differences of AIC (/) statistics with / ~p tends to a non-degenerate distri-
bution and the representations by S sums). Thus the overestimating of the true para-
meter is clear.
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