Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



SOME PROPERTIES OF MULTISTATE BW-SYSTEMS
KAROL J. ANDRZEJCZAK

In this paper we present a new approach to problems of reliability against hitherto binary systems.
On the basis of multistate system (see [3]), we propose some general definitions of k-importance of a
component (for the binary case, see [9]. Then, we outline the properties of k-importance and their
proo’s in a multistate system.

1. Introduction. Let us consider a multistate system consisting of » components
which are not repaired. Let C={1, 2,..., n} denote the set of components of the system
and for each i€ C, x, denotes the performance of the i-th component. For i¢C we
distinguish M;+1 performance levels ranging from perfect functioning — level M, to
complete failure — level 0.

In addition we have given sets of components called min path sets { P,, P,, » P},
where |/#_ P =C. The system state is defined to be the state of the “worst” compo-
nent in the best min path, that is to say the structure function ¢(x)= max min x,.

1=rsp i(P’

We call this system a BW-system (see [3]).

Let {X,(£),¢ 0} denote the stochastic process representing the state of the i-th
component (i¢C) at time £ as ¢t varies over the non-negative real numbers. The sto-
chastic process {¢ (X(f)), ¢ O} represents the corresponding system state when ¢ varies
from O to oo, where X(f)=(X\(¢),..., X,(£)) is known as a state vector. We assume
that the processes {X(f), =0}, /¢ C are mutually independent. Furthemore, we assume
N(0)=M, i¢C. This implies that when ¢ (X(0)) =M, the system will be at the perfect
operation state M for £-0.

2. Notations and definitions
(@) (k,x) denotes (x;..., X 1 By Xippyeeny Xn)s
(b) the component i(i¢C) of a system is irrelevant to {k, ..., k,} if for all s, 4,

E{ry, ..y Ryl 0 (s, X)=0(u, x) for each (-, x);

(c) a vector x is called an upper vector for a level & of a system if ¢ (x)=k. It is
called a critical upper vector for a level &, if in addition y<x and y-==x implies
¢ (y)<k;

(d) Uye) (or U,) denotes the set of critical upper vectors for level &, k=1, 2,.

@© {Pun....Pa={P;: mm M; =k} is called the min path sets for a level k

kR=1,....,M;

(fy 7, “inf {t \(t<j} (t(C Jj=1,2,...,M) is called j-lifetime of a new i-th
component, i. ¢. the time for which the i-th component first enters the states
{0.0,...,j—1},

T;=inf {t:(p(’X(t))<j} (j=1,2,..., M) is called j-lifetime of the system;
1, if x, &
x)=1{" ! and X)- X))o oos @l X,
(2) qulx {0’ it x <k gux) = (ga(x1) qdx,))
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v (x): k, lf ,Y“\\'k
"0, i x<k.
U ={qukr;, Oc—p,); Pic{Py, ..., Pola}:

let the i-th component have an absolutely continuous j-life distribution F;{#)
=P(T, <t) with density fi;(¢),j=1,2,,.., M;;
the j-reliability of the i-th component at time ¢ is given by r;(f)=1—F;(f);

. ry(f), if k=M,
for i¢C and k=1,2,.... M, R, (t)=1"%* /

8 {o it k>M,;

the j-reliability (j=1,2,..., M) of any system at time ¢ is given by H;(?)
= Hj(ry(t), - . -, ra(8) = Eq; (9(X(8))), where r(8)=(ran(£), .o ripg; (1), 1€C
the I%(£)=P{gs (0 (xis =k, X () —qu(0(x;,=0, X(®)}=1, k=1,..., M, is called a
B-k-importance of the i-th component at time £. In the binary case this impor-
tance was defined in [4];

the 1= [ [Hy(ea= Rt (1), - Ros (0) = Hy (5=0, Rus (- 0 Ry ) fie) dlt

is the conditional probability that the i-th component causes the system to leave
out the states {k, &+1,..., M} when the i-th component leaves out the states
(kok+1,...,M} (k=1,2,..., min (M, M)). This measure is called BP-measure of
k-importance for the i-th component (for the binary case see 1)

Y, = remaining system k-lifetime just before realizing the states {Roh+1,..., M}
of the i-th component (i¢C), k=1,2,..., min (M, M), Z,=remaining system
k-lifetime just after realizing the states {k, k+1,..., M} of the i-th component
(i€¢C), k=1.2,..., min (M, M),

Quu(u, y=P (Y, >u, Zyp>t), u ~t=0,

Gu(t)=P(Y, >t) t =0, Sy(t) =P(Z,>1), £-0;

Rl ()= Ri(t +w)/Ru(t), Rie.t~0

and for every binary vector x, (k-1,2,..., M)

Let x,=04(x,), Xp=(X1r -+ s X)3

AEN

RIEP @)= (RIS @), R @), ... R4 @)).

Note that the vector RZ_":""' (#) gives the conditional k-reliabilities of the compo-
nents at time ¢+, when the binary state vector x, at time ¢ is given.

3. Properties of a multistate BW-system. Now we formulate and prove seve-

ral propositions.
(1) If M= max min M, then {0, 1 ..., M} will be the set of states of the system.

1sjsp (P
Proof. It is implied from the definition of BW-system.

(2) If M,>M, then the i-th component is irrelevant to M, M+1 ..., M} and in this
case each of the states M+1, M+2,..., M, of the i-th component is not worth con-

sidering.

Proof. It is implied from (1) and (b) above.

(3) If min M, =m>M, then the min path £, is irrelevant to (M, M+1,..., m}.
P

Proof. It follows immediately from (2).

(4) For k=1,2,.... M, Uy~{(kp;» Ocp))s Pi€{Pr ..., Ppla}.

Proof. It is implied from (c), (d) and (e).

(5) gmUm(@) = qp Uy (90) - =4, U\(9)=U (o).
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Proof. It is implied from (g), (h) and (4) above.
, M.

(6) gu(e(x))=0(gx(X)), k=1,2,.
Proof. i) First we show that for every path, min ¢,(x;)=¢,(minx,).
i¢ Pi i P’
Let ming (x,)=1 < minx;=k < ge(minx,)=1,
PP, PP, i(P.

now let min gux;)=0 < min x; <k < g, (min x)=0;
PP icP iep;
ii) We show that max q,,(y,) q,,(max V)
1=j=p
Let max 7. (y)=1 < max y,>k = g, (maxy,)-l
sise

Now lei max g, v;)= 0 <> max y,<k¢>q,( max y)=0.
1=j=p 1sj=p

From i) and ii) we see that
94(9(x)) =, (max imin x)=max g, (min x)=max min g, (x)=0 (4 (x).

1s/sp ‘( 1=/=p ‘(i
(7) For k_\w... M Ty= max min 7.
PP Pobe i€P;
Proof. From (f) we have T,=inf {f:0 (x(f)) <k} =inf{f:q,(o(x(¢)) = 0}
inf{t: (g (£ (O)=0)—inf{t:  max . min g, (X ()=0)= " max min
Pi{Pu s Py iP; PP, ..., Py iRy
inf {£:q,(X,(2))=0}= max min inf {{: X()<k}= max min 7,
l’/({Pl ..... Pp‘l* I(Pl. Pl:l’l ..... Pp’h i(PI.

(8) For k=1,2,.... M, Hy(r\(t), ..., ra()) = H(Ru(t), . . ., Rpnl?)).
Proof. It is implied from (k). (1) and (7).
(9) The expectation E 7, when exists, equals to:

ET, OF HUR Wt - .o Rupt)) dt, k=1,2,..., M

Proof. It is analogous to the binary case.
(10) The function of the expected value of the system state is

E 0 (x(t)= ’i' Hy(Ryy(£), - + o2 Ruy (B), £0.

Proof. E@(X(?) ,-;‘. J.P(e(X(8)= j)=7_£‘l J[P(e (X)) =j)—Ple(X(®)=j+1)]
FMPOEO) M)~ T H RO, RO

(11) The probability density function of 7(k=1,2,..., M) is

OHYRW (). . - . Raxlt) 0
1= X fu( THRUC o Bk g0,
Proof. Fyt)=1—=HyRu(f), ..., R,(t)) and from (i) we have
" oH,(R.,m , Roplt)) ORI "X ¢ OHMR ML), . ..y Ruplt)) |
/k(') ~| dR—_—MU) ot inl flk( ) a—k“(ﬂ ’

and 5o fut)dt+0(d)~ T | fult)+0(00] OHAR0) - -+ Rad))/ORE).
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the probablity that the first enter of the system into the states {0, 1,..., k—1} in the
interval (4, ¢t+dt) is equal to the sum (over i) of the product of the probability that
the i-th component will enter into the states {0, 1,..., 2—1} in the interval (¢, £+dt)
and the probability that the last event will cause the system to enter these states
(for the binary case, see [2], in particular, Proposition 3.2).

(12) The probability that the /-th component will cause the system to leave out the
states {k, k+1,..., M} (k=1,2,..., min (M, M)), under the condition that this system

would leave out these states at time f, is given by (). f(f) Zl k(). f1: (D).
7

Proof. From (m) above we see that I (¢) is the probability that the system is
functioning at time ¢ at the states {k, k+1,..., M} if the i-th component is func-
tioning at the states {k k+1,..., M} but is not functioning at these states other-
wise. Proposition (12) implies immediately.

(13) The probability that the i-th component causes that system to leave out the
states {k, k+1,. ..M} (k=1,2,...,min (M, M)) in [0,¢] (¢>0), given this system
leaves out these states in [0, ], is

n

t I3
[ 1 (u)fp(u)du X [ 1) £ (w)du.
v =1 v
Proof. It is a cousequence of proposition (12).
(14) g ,:of’ 15(8) foe(Odt, R=1,2, ..., min (M,, M),

the Barlow-Proschan measure of the k-importance is a weighted average of the Birn-
baum measure of the k-importance (the weight at time ¢ being f,(¢)).

Proof. Note that Hy(gu(x)=1, Rix®), . -, Rux (1) — o (qu(x:) =0, R (8),..., Rult))
=P[q,0(x;, =k X(£)—qp0 (x4, =0, X(1))=1], k=1,2,..., min (M,, M) and from defi-
nitions (m) and (n) we have proposition (14).

(15) For i¢C, k=1,2,..., min (M, M),
il qk“[)\) l_qk(x,.k)
Le()= T [qu0(x=k X)—0,0(x =0, X,)] 7‘</”( [Rx (2) Fyu () J.
ik 5p)
Proof. It follows from the independence of the processes {X(f), >0}, i¢C.

(16) For i¢C, k—1,2,..., min(M;, M), 0=s—u,

k

o "k(",k' 1--¢ “',k'
Qunlu, 8)= | r n (R (£+5) Fu(t+s) )| fil£)q 0 (X0 = 0, x)

0 (4”“. %) J =

Ript4-u) 70l ik *8) Rixlt+u) ARTRR
S 0, RS @) Hylxp - kR, (@=s)] at,
R‘kl“ ’ R;k‘” t+

Proof. We have (0-s .u)
PIY,>u, Zu>s (T Cop 2T +8)) (4 (1ar X))

= Pqa0 (X, (t+ u))g,0(x,, =0, Xt +9) = 1] g Xu() =1, Conr Xa(E+48)=Cinr X0
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with pivotal decomposition

Rix(t4u) TkCik *k) Ripl(t+u)
=00 (x=0, x,) [Tk—(t)— Hy(xp=k R, , ., (“"S))'f'(l"w)

qk('l'k' %)
X k(xik:: O’ Rk_ t4s (ll—-S))],

by a conditional probability we have
P(Yiu>u, Zy>s|Tp=t)= I ) P[(im Xa(Tipt+5)=(ino Xp)]
ik ¥k

XP[Yi>u, Zp>5 [(Tig Cige Xe(Tip+9)) =, (oo X0))s

and Q. (u, s)= [ P(Yiu >u, Zy>s T, =t) f,(t)dt, the expression for Q,, (4, s) is now
immediate.

b 1 Xzp) X (x.,=k; x,)
(7 Gu@=[ = TLIA=Ru@) " Ry | R ™™ @) ftrat

ke Fp) S
Proof. For u==0 we have
P[Yiu>u [ (T Coo X(Tin)))=(t (-io X)) =P [g:0(X (¢ + 1)) =1 | g(Xu(£), Xi(0))

(X l'k:k' x

) .
=(1, gl X)) =Hy(R,, ¥ @)
the expression for G, (u) is now immediate by a conditional probability argument.

oo =g, (%)) Tix ) (x;=0, x
18) Syl)=f T TIA=Ru@) " " Ru@® "1 fult) HRETT Y @)at,u=o.
“ike ) I
Proof. The finding of the expression for §,,(«) is similar to (17).

(19) For £=1,2,..., min (M;, M) we have P(Z,=0)=1—P(Z,;>0)=1—5,,(0).

(20) The probability that the system left out the states {k, k+1,..., M} (k=1,2,...
min M,, M)) before the i-th component leaves out the states {k, k+1,..., M} is,
P(} =0, Z,,=0)=1-G,(0).

Proof. P(Yi=0, Z,=0)=1—P(¥,,>0)—P(Z,>0)+P(¥,,>0, z,.,>0)=1—0,,,(o)

—Six(0)+Q.(0, 0), from (16), (17) (18) and since
X, -k, (X;==0. X;)
He (R (0) =g, 0 (v =&, ), Hy(RETE™ (0) = 40 (x,4=0, 2),
G0(xn=1, %) =q,0(x;, =k, %)+ @,0(x,=0, X,)—qx0(x1, =k, X1) ¢,0(x;4 =0, Xx,),

oo

we have 1—G,(0)—S,,(0)+Q,(0, 0)=1— { TN [(1=Ru () W R )™

Copr Xp) JoH
X a9 (xip=k, x) fn(t)dt=1—G;,(0).
(21) For k=1,2,..., min (M, M), we have I =P (Z;,=0)—P(Y,,=0, Z,y=0).
Proof %=1 £ T1[(1=Ru() P Ry ] (40 (xi = b X2) — g

("'*' ) JH*

X (X = 0,2,)] fiu(t) dt = dT b l1 (1 =Ry, (t)l-v,,(xw Rh(t)vk(m,)l [H.(Ri‘fﬁ”'-" %)

Cige X9 JH

22 Cepauka, xu. 4
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% (0)— Hy (RH R (0))] £,,(8) dt = Gp(0)— S (0)= P (Zix=0)—P (¥, =0, Z,,=0).

1

We see that the Barlow-Proschan measure of the k-importance of the i-th com-
ponent is just the difference P(Z;,,=0)=P(Y;,=0, Z,=0).
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