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NECESSARY AND SUFFICIENT CONDITIONS
FOR THE EXISTENCE OF NON-OSCILLATORY SOLUTIONS
AND OSCILLATION OF ALL SOLUTIONS OF SECOND ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

D. C. ANGELOVA, D. D. BAINOV

In the present paper necessary and sufficient conditions are obtained for the existence of non
oscillatory solutions and for oscillation of all s>lutions of a class of second order functional differential
equations with a deviation depending on the solution we seek and on its first derivative.

The oscillation results are applied to a model from the theory of rocket motors.

I. Introduction. In this paper we will find necessary and sufficient conditions for
the existence of non-oscillatory solutions and for oscillation of all solutions of the
equation

(1) (' @)+t y(t), y(&lt, (1), y' (1)), ¥'(£), y'(&(L y(&), y'(£))=0, t=t,€R
in the cases when

@ J < -
and

, < 4t

) J ==

as well as sufficient conditions for oscillation of all solutions of the equation

(@) YO +alt)y )+ L, y(8), WG, y(0), y'(D)), y'(@), y'(G(E (), y'(£)=0,

where n is a positive real number and n¥1.
Equation (1) includes as a particular case the model [l] for perturbation of the
velocity of the spray of fuel in liquid propellant rocket motors

X"(£)+(a+Bp)x'(£) + aBpx(t) + yx(t—A) = 8,x(£)x"(£) + Sox*(£),
where

A=A(p)+hy pA'(p)x(t) + haA'( p)x'(8) + (B DIERATENE) 4y o v )ity (8)

L ) IO

2
ALty RT. o AV _RIAy s A . ad
= e = P Y= Ty S B
AV, - _ ~ _ (A AP—(AAP g A A
h, = v WOt hy=—pl, hy=—pA, h =hh,, A—w-——-}-lﬂ l=1, »A-l-+-]'—-
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348 D. Angelova, D. Bainov

V., — volume of the combustion chamber, 7, — absolute temperature in the combu-
stion chamber, p—pressure in the combustion chamber, p — density of the fuel,
R — combustion coefficient of the product per unit mass, v, — velocity of the flow in
the feed-line, L* — characteristic length of the motor, ¢* — characteristic velocity of
the flow, A, — cross-section of the entry of the reservoir, A, — cross-section of the
pipeline, A; — cross-section of the exit of the nozzle, /, —- length of the reservoir,
[, — length of the pipeline, /3 —length of the nozzle.

Necessary and sufficient conditions for asymptotical stability of the solutions of
the linear equation

X"(8)+(a+Bp)x'(£) + uBpx(t) +yx(t—A)=0

have been obtained in [2]. Here we present some new results on the behaviour of the
solution of a more general equation

(5) X" () + (a+ Bp)x'(8) + aPpx(t) + yxo(t—Aees’ x(£) =0,
where o>1 is even and
(6) A=A(p)+hy pA'(p)x(t)+ had'( p)X'(2).

In what follows we assume that the functions r, f and g satisfy conditions (H):
H1. ()€ C'([t,, =); (0, =), r'()=0;
H2. f(, u;, g, s, u)€C((ty, )X RY u,fit, uy, uy, s, u)>0
fOl’ ul#o. Ug, u3l u.«(R;
H3. g(t, vy, v)€C([ty 2) <X R?), g(t vy, V) —co as t—oo for any vy, vy¢ R fixed and

g(t, vy, Vy)=g(t, vy, vy) for vy~ v, 0,70, £=£;; and the functions a, Fand G satisfy
conditions (H):
AL a(t)e C(te )5 (0, =));

H2. F(t, uy, ty, g, 1) €C([tg =o)X RY), r,““’—""»—:if,'—"-"—ﬁ“ =0 for w0, wuy uy u€R,
1
t -tyeR and 0—n+1;
H3. G(t, v, va)€C ([t =)< R?), Gt vy, vg) —=o as t —co for any vy, v, € R fixed where
R=(— 2, =)and R¥=RX --- X R (k times).
The continuous function wy: [f, co)— R is said to be oscillatory if there exists
an infinite set {t,} < [f, <) of zeros of y(f) such that 1, —+cc as v-»co; otherwise

the function w(f) is said to be non-oscillatory.
= ds Lds — , )
[)Cnotc p(t)-:tj r(’SV) ) R(t) :’“f;(—;-) » g(t):g(t,y(f),y (t)),g.(’, l)l,l).))=|n|n {t' g(t' Ul'l)i})
and g*(¢, v,, vy)=max {£, g(t, vy, v,)}.
II. Main results.
°dt
1. The case (j Fo) <o
lLemma 1. Let conditions (H) and (2) hold and
(7) ’inf {r(t)p(£)}= g = const>0.
=t
Then for each non-oscillatory solution y(t) of (1) there exists a number t, =t
such that for t—t,, y't is bounded and with constant signs,
(8) —r()y'(Op(t)= y(t) =kt when y(t)>0 and k*=const>0
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and
9) —<y()y=—rt)y'(t)p(t) when y(t)<0 and k~=const<0.

Proof. Let y(f) be a non-oscillatory solution of (1) and, for instance, y(f)<0
for t=T,=¢, (the proof is similar when y(/)>0 for £=T,=#%). (1) and H2 imply
(r(t)y'(£)>0, i. e. | y'(t)!>0 for ¢-T,-T, and

(10) r(t)y (O)=r(t)y'(t) for any t=t=T,.
Dividing (10) by r(f), integrating from 7 to ¢ and letting £ —co we obtain '

0> 3= 3E) +-r(l) Y/ D) [ 25 e 90470 W EIP(E).
t

i. e. y(£)=—r(£)y'(£)p(f). But ¢ is arbitrary, hence the right-hand side inequality of
(9) holds. In order to obtain the left-hand side inequality of (9) and the boundedness
of y'(f) we shall consider the cases when y’(£)>0 and y'(f)<0 separately.

Let v'(£)>0 for ¢=T,. Since y({)<0 for ¢t=T,, we can find k~=const<0 and
T3> T, such that y(f) -k~ for ¢=T; which proves the left-hand side of (9). From (9)
and (7) we obtain ,

k= kT
rieee) g

Let y'(£)<0 for ¢== Ty Dividing (10) with ¢ =T, by r(¢), integrating from 7, to ¢

and letting £ —-o, we get

0<y'(t)<=— for t=T,>Ts

WO = W)+ AT (Ta) [ 455 e K Ta) + Ty (T)R(T2) =k~ =const,

i. e. the left-hand side of (9). It is easy to see that &~ <O.
Let ¢=T, and r(T,) v'(Tg)=a<0. Dividing (10) by r(f) and using HIl, we have

’ a . a )
0>'\' (t) ;(W 7{7-;)' for ¢ T-J-
Lemma 1 is thus proved.
Theorem 1. Let the following conditions hold :
1. The conditions of lemma 1 are valid.
2. The function f(t, w,, 1, us u,) satisfies either

(11) VAt g g, g ) <= | flE, ity o iy, w)| for |u|< |, w0
or
(12) flts 1y, g, ug w)| = fil g g, 0y, 0)| for |u;| <], up=0

for t=t, i=1,4.
3. [ )|t e e, e’ c)|dt==5 for any c+0, c'€R.

Then all non-oscillatory solutions of (1) tend to zero as t— .

Prootf. Let, for instance y(£)>0 for £=¢,=£, (the proof is similar when ¥(£)<0
for ¢-#,-¢)). In virtue of lemma 1 y(f) is monotone and y(f) and y’(f) are bounded
for t.-t,=t,, i. e. there exist constants L=0 and M>0 such that lim y(f)=L and

=00

0<|y'(8) =M for tazty,
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If we suppose that L>0, then for each e¢(0, L) there exists £;=# such that
| ¥(¢)—L|<e for t=t; Let m=M when y’(¢£)>0 and m=0 when y'(¢)<0. Applying H3,
we obtain g(¢)=g(¢, L—¢, m)—co as t—co, hence g, y(f), y'(£))=t; for t=t,=t5

Then | y(g(¢, y(t), y'(t)—L|<e and 0<|y'(g(t, y(2), y'(t))|=M for t=t,
T Let c=/ —¢ and ¢’=0 when (11) holds, and ¢=L+¢ and ¢’=M when (12) holds.
hen

(13) i, y(t), y(g®), y'(O), y(@EN=fit. ¢ c, ¢’ ') for t=t,.
Multiplying (1) by p(¢), integrating from ¢, to ¢ applying (13) and (8) and let-
ting £-—o0, we get

0=r(t)y"(£)p(t) + () — r(t,) ¥' (E)p(t) —Y(t)
+tft S(s. ¥(s), V(&) V'(S), V(RSN = —r(t) y' (E)p(E)— ()

+ o5, 60 €' s —rE) YD) =I(t)+ T PSS €, ¢ €,

i. e. _Fp(s)f(s, ¢, c, ¢, c'yds<-> which contradicts condition 3 of theorem 1. Thus
t

L=0 and theorem 1 is proved.
Now we shall obtain necessary and sufficient conditions for the existence of a

non-oscillatory solution y(f) of (1) such that lim y(¢)=const=-0 and lim “;((—:;_—.const:t:o.
t t—r00

Theorem 2. Let the following conditio;; hold :
1. Conditions 1 and 2 of theorem 1 are fulfilled.
2. r(t)=1 for t=t, and the functions J._) s fb .y n.,.) and gt,.,.) are Lip-

(
schitz continuous with Lipschitz constants v, & and ny>0, respectively.

3. sup |f(¢ ¢, ¢, ", ¢")| <> and j?o’f(t, ¢, ¢ ¢, c)|dt<o for some c=+0 and
some c”ffk. ‘ ‘

4. g(t, vy, vo)=t for any v, Va€R.

Then there exists a non-oscillatory solution of (1) with a non-zero limit as

oo iff
(14) ‘f o(h) | f(t. c. ¢, ', ¢') | dE< o

where the constants ¢ and ¢’ are the same as in condition 3.
Proof. Necessity. Let y(f) be a non-oscillatory solution of (1) with lim y(¢)50.
=400

If we suppose that condition 3 of theorem 1 holds, then by this theorem we con-
clude that all non-oscillatory solutions of (1) tend to zero as f{—co which is a con-
tradiction.

Sufficiency. Let (14) hold and ¢>0 (the proof is similar when ¢<0). Denote
8=c and ¢’=8 when (11) holds and §=2¢ and ¢’=0 when (12) holds. Applying (2),
condition 3 of theorem 2 and (14), we can find #,.-f, such that p(£)<] for £=¢,,

(15) T A eoen et o) it e, e, e, e
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and by H3 we can find #,=¢, so that g(t. —g—' c')zto for t=t,. Let Ty=max{t,, &},
T.= inf g(t, S c’) and To=min{Ty, T.}.

=T,
Denote by C' the space of all continuously differcntiable functions y: [T, o) =R
with the topology defined by the family of semi-norms iyfgt‘z(srupl{[y(t)%-kly’(t)i},

where ©>7, and t is an integer, by B! — the set of all monotone functions yect
for which

S
2
|y(@)—y'(t)|<=a |[t—t for ¢, t =T,

where @’ =v3+f, and f,= supf(¢, ¢, ¢, ¢’, ¢’) and by A: B'— C' the operator defined
by the formula =T,

0=|y'(t) <8, S =y(t)<8 for £=T, and

(16)

5 +000) [ f(s () Y@ ¥(). ¥@INMs +] ()i, () HE) Y5
(Ay)(8)= y'(g(s))ds, t=T,
S+ T s, Y5 Y@ ¥ Y @S, tElTor Tl

It is easy to see that C' is a Fréchet space and B' is bounded, convex and
closed. Let y¢ B!. Then the function (Ay)(¢) is continuous in [T, o). From (16) and

H3 it follows that E(s)z_-g(s, —g—' c')g T, for ¢=T, and then from H2, (16) and con-
dition 2 of theorem 1 we get
(17) 0<f(t, Wty Wgt), V() v(&t))=f(t. c, c, ¢, c') for t=T,

In view of the properties of p(¢) and (15) —(17) we obtain

FEANO= 5+ [ o) fis 36 ¥ ¥(6) ¥ @ENMs

h—g—J'— rj.‘ p(s)f(s. ¢, ¢, ', t’)ds§—3—+—g-=5 for £=T,.
Since
o r‘f £(s, (), Y@, ¥ () Y @E)ds, =T
(Ay) (D] = 0, £¢[Ton T

then in view of (17), (15) and thé fact that r(f)=1 for £=£, we obtain
0=((An) ) = ff'f(s. ¥(s). Y (s)). V'(8) y'(&(s))Mds= fﬂs. ¢ 6 ¢, c')ds<8 for £2T,.
For ¢, £¢[T, T,] we have |[(Ay)(t)—(Ay)(f)]' =0 and for t>f>T, we obtain

AN OF (AN OF =] =77 | s, %) HEED. Y ¥ @Ns
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L T ) - , )y .
H D 1{ (s, y(s), y(g(s)) y'(s), y'(g(s)))ds

L~y (- lﬁ
r(?}

| [ 5 HS) MBI, V) YN+ gy L5 K. HED: YO

V(g(s))ds<v|t—t| jf(s, c, ¢, c')ds+_f’f(s‘ o6, c)ds<(Vo+f,) | t—t]|=a' | t—t]

while | [(A) O ~[(AV) O =5 [ f(s. Y(5) Y@, ¥(5) y'@(s)Ms

¢ -
= [f(s, e, ¢ cyds=a’ t—t]
t

for t=T,=t =T,
since (17) and condition 2 of theorem 2 hold. Consequently, A(B')=B' and the func-
tions belonging to A(B') are equicontinuous on [T, <<), therefore on the compact
subintervals [T, t] of [T, ->) as well.

Now we shall show that A is continuous. Namely, if {y,};> = B' converges to

V,€B in the topology of C!, then for £¢[T,, 1J=[T,, T,] we obtain
(A O—(A) O|= [ 0l) s, y(5) Y8 ¥,(5) (&)

B

—f(5, yo(s), Yo(&S)), yils), vy(&()) ds= 1[ o(s)Fy(s)d's
and |[(Ay,) (O] —[(Ay) (O] =0, and for £€ [Ty, t] where t>T, we get

[ (Aya) ()= (Ayo) (B) =] p(8) ,f'f(s. V() Y& ) Y,(5): (" ($))ds
T 0(8) f(5, 3a(5), Y87 Y)Y, (8 (S))s —(t) j/(s. Yo(Sh Yo(£AS). yels). yo(g(s))ds

— TP, 1o5). YA &AM (). VBN < [ o(s)F(s)ds
and ) ‘
LAY OF ~[(Ar) OF 1= s [ 1. 32(). YAR . Y(5). 3, (&)

—f(8, Yo() V(€A Yels) V(&SN |ds = [ Ffs)ds< J F.(s)ds.

where Fy(s) = | /(8. Ya(sh Ya(&(5)), (), Ya(&(SN) = (5. ¥o(5), ¥ £%(5)). ¥ols). yo(&*(s))) | and

2A8)=g(s, yAs) y[s)) for j=0, n.
In order to estimate F,(s) we shall use (16), (17) and conditions 2 and 4 of
theorem 2. For s=:7, we have

(18) F(8)=2f(s, ¢, ¢, ', ¢")

and ) B " ‘
F$)<:Eol | yal$)—Yol$) | +| YY) = Y& °(5)) | + | ya($)—yuls$) |
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+ | VRN =Y &N [ }=Eof | ¥a—Yo o+ ¥a(87() —ya(&5))
(19) +| Ya(BYS) = Yo AN | +| ¥ (&) —¥ (&%) |+ y(8X) -8 [}

SEof2(| ya—Yolle+(8+a") [ (s, Yals) YN (S, Yol$), ¥o($)) [}

<E{2/1 Ya—Yo [+ @+ &) [ | ¥4(8)=yo(s) [+ ¥ ()—yo(9) [I}
<&+ G +0)] | Ya—Yol iz 0.

Therefore, p(s)F(s)<2p(s)f(s, ¢, ¢, ¢’, ¢') for s=T, and p(s)F,,(s)-—.O uniformly
since (2) and (19) hold. Thcn by Lebesgue’s theorem for dominated convergence we
obtain ,j F,,(e)ds—_.O and l p(s)F, (s)ds—*O hence

(20) nllt:[lsrug'!(Ayn)(t)—(Ayo)(t) ]=0 and Jim [;ug] [(Ay,) @) —[(Ayo) (&) 1=0.

From (20) we conclude that | Ay,— Ay, | — 0, thus A is continuous. Applying
Schauder — Tychonoff fixed point theorem (S'i-.;c find y¢ B! such that y=Ay. Thus
the function y=y(¢) is a solution of (1) and since y'(£)=0 for £=T7, and y(t)>— for
t=T, we conclude that lim y(¢)=const==0.

t—oo
Theorem 2 is thus proved.
Theorem 3. Let conditions | and 2 of theorem 2 hold, ?10— is Lipschitz con-
tinuous with Lipschitz constant p>0, gt, vy, vg)=t for any v,, v.¢ R and

sup | fit, bp(2), bp(g(t, B. B, B', B)), 0", b)| <<=
=te
for any b, b', B, B'€R fixed.

Then there exists a non-oscillatory solution y(t)of (1) such that hm '::((J const+0iff

(21) f Lf(t, cp(t), cp(g(t, v, Y. ¢, ¢')|dt<o for some ¢ =0 and some c',Y, Y €R.

Proof. Necessity. Let y(f) be a non-oscillatory solution of (1) and hm—o—a

=const>0 (the proof is similar when a<0). Then for each €¢(0, a) there exists £,==¢,
such that p(¢)<<1 and

(22) 0<(a—e)p(t)<y(t)<(a+e)p(f)<sa+e for t=t,.
Then by lemma 1 we can find 4, =¢, and d’=const>0 such that
(23) 0<|y' ()| =d’ for t=t,

Let, for instance, 0<y'(f)=~d’ (the proof is similar when —d’=y'(£)<0). From H3,
(22) and (23) we get

(24) ty=g(t, 0, d')=g(t, W(t), v'(t))=g(t, a+¢, 0) for t=t3=>1,
and since p(.) is decreasing, we obtain

(25) &1, a+e, 0))5p(gt, W), y' ()= p(&(t, 0, d) for t:ty
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From (22), applying (24) and (25), we observe that
(26) (a—s)p(g(t, a+e, 0))=(a—e)p(&(t)=y(&()=(a+e)p(gt)=(a+e)p(glt, 0, d'))
for £=¢; and from (23) and (24) we have
(27) 0=y'(gt))=d" for t=t,

Let c=a ¢, ¢'=0, y=a+¢, y'=0 when (11) holds and c=a+¢, ¢'=d’, y=0
v'=d’ when (12) holds. Then from (22), (23), (26) and (27) we obtain the estimate

(28) [t y(&). y(&(t)), y'(O). y' (&)=t cp(t). cp(g(t, v, ¥')). ¢, )0 for =ty

Integrating (1) from ¢; to £ applying (8), (22) and (28) and letting £-—o0, we
have

0=r(t)y'(8)—r(ts) y'(ta)+ f f(s, (5), Y(&()). y'(s), y'(&(s)ds
“"ﬁg —r(ty) y'(ts) + f f(s, ep(s), eplgls, v, Y, €', ¢)ds
=—(ate)—r(t)y'(ta) + f S(s.ep(s) ep(gls, v, ¥, ¢’y €' )ds—

o —lat e+ 1t Y (E)]+ T (s, epls). enlgls, 1. 7). €' ¢')ds

i. e. (21) holds.
Sufficiency. Let (21) hold for ¢>>0 (the proof is similar when ¢<0). Denote

=%- ¢'=28 when (11) holds and 8=c, ¢’=0 when (12) holds. In view of (2) and
(21) we can find ¢, ¢, so large that

(29) pt)=1, f’ f(t, cp(t), cp(gt, v, ¥)), ¢y ')t =3

and by H3 we can find £,>-¢, so large that g(¢, 8, ¢')=f, for £ =£y. Let Ty=max{t,, &y},
T.= in£ g(t, 8, ¢’y and To=min{T,, T,}.

=Ty

Denote by C, the space of continuously differentiable functions y: [T, c0)—=R
with the topology defined by the family of semi-norms ,,y,,~sup{ ;'((9—1+|y'(t) }

where t¢(7,, <o) is an integer, by B, —the set of all y¢C, for Wthh Sp(t)<y(t)
<26p(f), 0=|y'(t)|=26 for ¢ Ty and | ;‘,‘)) “:(:))i'\alt 1O —y(E) | =a | t—1)
for ¢, £ =T, where a=pd+2f, a' =2v+f, and fo,= ‘szugf(t. cp(t), ep(gt, v, ¥)), ¢’y )
and by ®: B)— C, the operator defined by the formula

S0tt) 00) (5, YO, ¥ Y RN + [ ). Y6 @D VS,
(@9)(O)={ w(g(s)ds, t=T,

3p(t) + f p(8) (5, ¥(5), X&) ¥'(s), y'(&(s))ds, t€[T,. T,).
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Further the proof is analogous to that of theorem 2.

Theorem 3 is proved.

The following theorem guarantees oscillation of all solutions of equation (1).
Theorem 4. In addition to conditions (H), (7) and (2) assume:

1. There exists o>1 such that lf—-(t'——"“l;'f#?—"ﬂ<z-u(—‘i'-"' dp s 8| gor 1y <&,
2| lugl®

uu;>0 (i=1,4) and t=t,

9 = g, Y'L» | ’ roary o ’ ’

2 tf Nt 7. 7y LA cp(d), ep(glt, v, Y)), ¢, ¢') [ dt==ofor any ¢=+0, ', v, T'€R.

Then all solutions of (1) are oscillatory.

Proof. Suppose that there exists a non-oscillatory solution y(£) of (1) and let,
for instance, y(£)>0 for f==¢,=¢t, (the proof is similar when y(/)<0 for t=t,=1¢,).
By lemma 1

(30) 0<|y'(£)| <k’ for t=t,=t, and some &’ =const>0.

We shall consider the cases y'(£)>0 and y’(£)<0 for £>={, separately.

Let y'(£)>0 for t=t,. Since y(f)>0 for ¢>=¢,, we can find #,>¢, and /=const>0
so that y(¢)=! for ¢>=t;. But (8) implies y(f)<k™* for £>=¢,, hence g(t)=g(t, |, k')=t; and
W(g(t))=1 for t=t, and y'(g(£))>0 for t=t¢,.

But condition 1 of theorem 4 yields (11). Thus (13) holds for c¢={, ¢"=0 and
t>=t,.

' ‘On the other hand, g*(¢ v, v')==g(t. v, v') and p(.) decreases. Choose the num-
bers #,==¢,>t, so large that p(f)<1 for £>=¢; and g(¢, v, v')=t; for £=¢;. Then

p(g*(t, v, Y") o ’ Pt - oA
( o(gt, 7. 7)) ) f' (t‘ Cp(t)' cP(g(t» T Y ))v c,a) >f(t. 6, c,C ) for tzts
and hence

@D ff(t' ¢, ¢, ¢, c')ydt= o for any c¢=0, ¢’ € R.
£

Integrating (1) from ¢; to ¢ applying (13) and letting f—-o, we obtain
F At k', k., 0, 0)dt< - which contradicts (31).
“ " Let y(£)<0 for t=t,. Consider the derivative
(—(—=r(t)y' () =°) =(a—1) (—r(t)y' () "(—r(t)y'(?))

(32) = (o= 1) (=r(O)y" () fit (), Y(&(D). y'(#). y' @)
(0= 1) (—r(ty () LB YO, YEWO). YO Y EON for 4,
y(g(t) N

From (1) in view of the positiveness of y(¢) and H2 it follows that (r(f) y'(£))<0
for £ -¢,. Then

— A< — (o™ (f v v V)V )< N&E YY)
(33) ey (6= —r(@*(t, v. ¥ )Y (@t 1 V)= {awyyy foF =t

since < g*(t, v, v') and (8) holds, and r(£)y'(¢)=r(t,)y'(¢,) for t=¢,.
Integrating last inequality from 7 to <>, we obtain

(34) We)y=ap(t) for t=t, (a=—rt)y'(#,)>0).
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On the other hand, W(f)>0 and y'(f)<0 for ¢=¢, ensure that lim y(f)=k=0
exists, hence o
(35) |y(t)—k|<e for each e¢(0, k) and f=f,>f,.
From (30), (35) and H3 it follows that
(36) ty=g(t, k—e, k)= g(t, y(t), y'(t)=g(t, k+¢,0) for t=t;=t,
From (34), (36) and (30) we deduce
(37) y(g(t))=ap(g(t)=ap(g(t, v, ¥)) |y'(&(t)) >0 for t=ts

where y=£k+¢, v/ =0.
Condition 1 of theorem 4, (34), (30) and (37) yield

(38) e, i), W& (6). v (€)y (28 __ St. ap(t), ap(g(t. 1, ¥)). 0.0) ¢,

yo(g(#) - a%po(g(t, 1, 1)) it

From (36) and the negativeness of y'(f) we get
(39) VW) =&, v, v)) =y(g*(t, v, 1)) for t=ts
Then
(40) (—(—1(t)y' (1) o) =(c—1) D(g.(t vy )’y«(g (t, Y,.{))/(t ap(t). zo(;z(f v Y).00)
g4 (t. .1 a%%(g. (t. 7. ¥)
= oL (& 1) e fih, ap(t), ap(a(t, v, 7). 0, 0) for £ty

a® p(glt, v 7))

since (32), (33), (38) and (39) hold.
Integrating (40) from f4 to £, we have

(41) o[ EEC I S ap(s). ap(gs. 1. 7). 0. 0)

>("’(t3)y'(t3))‘ —o—(—r(t)y (£) < (—r(ts)y'(E3)'°.

Letting £ — -o in (41), we obtain a contradiction with condition 2 of theorem 4.
Theorem 4 is thus proved.

Theorems 3 and 4 imply

Corollary 1. Let the conditions of theorem 3 and condition | of theorem 4

p(g*t v. ¥')
hold and :E’f Xe 7. 7)) >0 for any v, ¥ €R.

Then all solutions o/ (1) oscillate iff
;f [(¢, cp(t), cp(g(t, v, Y')) ¢, )| dt=co for any c+0. ¢', v, v € R.

T dt

2. The case fr(:) = 0,
Lemma 2. Let conditions (H) and (3) hold and y(t) be a non-oscillatory solu-
tion of (7).

Then there exists t,:zt, and a,, a,>0 such that for tzt, y'(t) is bounded and
(42) yew'()>0 and  a, = (1) 5 aR(2).
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Proof. Let y(£)>0 for t=¢,=¢, (the proof is similar when y(f)<0 for £=¢ =¢,).
Then (1) and H2 yield (r(£)y'(¢)) <0 |y'(#)|>0 and

(43) r@t)y'(O)=r(t)y'(t,) for t=t,
Dividing (43) by r(f) and integrating from ¢, to ¢, we get

¢ N
(44) YO=Y®)+rt)y (1) % for t=t,.

Suppose that y’(£)<<0 for £=¢,. Then (44) implies the contradiction y(t)—o—;c

since (3) holds. Consequently, y’(£)>0 and there exists a,>0 such that y(t) -a, for
t=t,>t,. Denote a,=r(t,)y'(#,)>0. Then (44) yields y(f)=ayR(t) for t=¢,.
Dividing (44) by r(¢) and applying H,, we obtain

’ a; _ a;
0<y'O=7g=r
i. e. y'(f) is bounded.
Lemma 2 is proved.

Theorem 5. /n addition to (H) and (3) assume that :
1. Condttwn 2 of theorem 1 is fulfilled.

2. R(.), ;- and g(t,.,.) are Lipschitz continuous with Lipschitz constants p,
v, M, reSpeLtwely sup {R(t)| f(t. b,b,b",b")|} <o forany b, b’ ¢ R fixed and g(t, v,
v,)=t for any v, D)E R.

3. Sl g, ttyy ) —f( Uy, Uy, U, E)lsi(t)__: T, T where £(t)>0 and sup R0 <.

Then there exists a bounded non-oscillatory solution of (1) iff

(45) ]iR(t) fit, e, ¢, 'y ") di< o for some ¢+0 and some ¢’ ¢ R.
e

Proof. Necessity. Let y(f) be a bounded non-oscillatory solution of (1) and, for
instance, y(¢)>0 for £—¢,=¢, (the proof is similar when y(f)<0 for t=¢,=¢,). By
lemma 2 we can find numbers 0<a,<a,, d'>0 and #,=f, such that a,<y(f)<a, and
0<y'(f)=d’ for t =£,. As in the proof of theorem 1 we obtain (13) for £=f3=>¢, and
c=a,, ¢'=0 when (11) holds and c=a,, ¢’=d’ when (12) holds. Multiplying (1) by
R(t), integrating from 7, to ¢, applying (13) and letting #-—~c, we get

R(t)r(t)y'(t)—y(t)— R(ta)r(t,)y'(t,)+y(t,)+j' R(s)f(s, ¥(s), y(&(s). ¥'(s), ¥'(&(s))ds

>—ay— R(‘a)’(‘s))’(‘s)*‘fR(S)f(S ¢ 6 s

l—o

Py —(aa‘i"R(ta)'(‘a)y'(‘a))"'{R(s)f(so ¢ ¢, ¢, c'ds

i. e. (45).

SufflClency Let (45) hold for c>0 (the proof is similar when ¢<0). Denote
8¢, ¢'=8 when (11) holds and 8=2¢, ¢’ =0 when (12) holds. In view of (3), (45)
and Hl we can find a number f -f, so that R(f)=1 and r(f)=1 for t=t,
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?R(s)f(s, ¢, ¢, ¢!, )ds=-> and by H3 we can find f,2¢, so large that g(t 2,0

-t, for t=t, Let T,=max {t, to}, To= inf g(¢, %, ¢') and To=min{7,, Ty}, and C!
t==T,
and B! be the space and the set defined in the proof of theorem 2 and o’ =v3—+7
and f= sup R(f(t, ¢, ¢, ', ).
t=T,
Let y: B'— C! be the operator defined by the formula

5 [RGY(S. Y 9 (€O, ¥(5), Y (@GS +RO) [, 35) &)

l
() () { V(). y'(g(s))ds, t =T,
|8+ RO A5, ) WY (5)y et £ (T T

Further on we proceed as in the proof of theorem 2.

Theorem 5 is thus proved.

Theorem 6. In addition to (H) and (3) assume that:

1. Condition 1 of theorem 4 holds.

2. There exists hy(t, v, vg)€ C\([by, )< R?) such that hy(f, vy, Va) =gty vy, V)

for any vy, v € R fixed and h,(¢t, v, v,) — © as t— <o, Qh_did_‘vn_\)_ﬂ\o

3. :}R(k,(t, Y. YN f(t e e )| dt= o for any ¢ 0, ¢y, Y ER.

Then all bounded solutions of (1) are oscillatory.

The proof is similar to that of theorem 4 and we omit it.

From theorems 5 and 6 we obtain

Corollary 2. Let the conditions of theorem 5 and conditions I and 2 of theo-

. 3 R(hut, 1. 1)) ’
ld and inf =240 >0 , .
rem 6 hold an tlf?“ “RD) >0 for any v, v €R

Then all bounded solutions of (1) are oscillatory ify
TR(t)I/‘(t. ¢, ¢, ¢, ) dt=c for any c+0, ' €R.
ly

Remark. We note that analogus results have been proved in [4]—[7] in the ca-
ses when f=y(g(t))F(W(g(t)* t) and g()<t: [~ fiy(g(0), ¢) and g()<t; f==f(V(&(1)), )
and g(t)>t; r(t)y=1, f=1f(t, v(&(t y(#)) and g(¢ v) is of mixed type, respectively.
While in [4—7] the authors have used Schauder’s fixed point theorem, here we consi-
der Fréchet spaces and apply the Schauder—Tychonoff fixed point theorem.

3. A comparison theorem. For equation (4) and the equation
(46) y'd)+a(t)y(t)-0

we shall prove the following comparison theorem.
Theorem 7. Let conditions (F) hold and let all solutions of (46) be oscillatory.
Then all solutions of (4) are oscillatory.
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Proof. Let all solutions of (46) be oscillatory and there exists a solution y(#)
of (4) which is non-oscillatory. Since y,(¢)+=0 for ¢>¢,=>¢, then by /12 we obtain
Fit, yolt) v G(1), wo(t). g (G(t))

(47) 7= o
0

>0 for ¢=t,.

Let n>1. According to theorem 1 [8], the oscillation of all solutions of (46) im-
plies

(48) :fta(t)dt = oo,

From (47) and (48) we observe that [tA(f)dt=-> where A(t)=a(t)+F(f). Ap-
plying once more theorem 1 [8], we conch;ae that all solutions of the equation
(49) Y'(O+AE)y(@)=0
are oscillatory. It is easy to see that y,(¢) is a non-oscillatory solution of (49) which

is a contradiction.

Let O<<n<Cl. According to theorem 1 [9), the oscillation of all solutions of (46)
yields

(50) ;ft"a(t)dt = e,

From (46) and (50) we observe that 7t"A(t)dt=au. Applying now theorem 1 [9],
¢

we obtain that all solutions of (49) are osci'llatory which contradicts the assumption
that yo(£) is a non-oscillatory solution of (4). Thus, all solutions of (4) are oscillatory.
Theorem 7 is proved.

4. An aplication. Finally, we will illustrate theorem 6 on equation (5) with (6).

Corollary 3. Let o, B, v, p, h, and hy be defined as in the introduction and
6>1 be even. If a=Pp, A(p)>1/a, A'(p)<0 and the numbers t,=t,(v) and &,=e(v)>0
are defined so that e,=A(p)+hA'(p)v and t,>0 for v=0, and e,=A(p) and
t,> -;~ Inf{—akgA’(p)v] for v<0, then all solutions of (5) with (6) are oscillatory for
t=Ty=0(ty+¢,). .

In fact, by the substitution x(f)=e—*y(f) equation (5) is transformed into the
equation

(51) V') +ve & y(t)ye(t—A) =0,

whete K A([’) + Khll’ —uh,)y(t) + h’yl(t)Ag'(p)(ﬁut — A([’) + h?A'(,))e—oly’(t) S/::]Ci hk’;“._ ﬂ’l,

AV, pAyLtcty, p d ’ - i
-;"—L.[‘.. —V‘T“)’*' rocs =p|- Apo+_l_.t.._]=0 when a=Pp, i. e. when T=Tes"

It is easy to see that (51) is a particular case of (1) when r(f)=1, f(f, u,, u, u,,
) = ye*ouu3 and g(t, vg)=t — A(t, vy) and the functions r, f and g satisfy (H), (3)
and condition 1 of theorem 4. From the choice of £, &, and A(p) it follows that

A(f, vg)>0 for £~ £, and for any v, ¢R fixed. Then g.(¢, v;)= &(f, vy) and the function % (¢, v,)
= (1, vy) satisfies condition 2 of theorem 6. But (3) yields

R("c(" "a))"*h-(’r \’a) "o"’" A('- "a)—’u -c(lo+cu)—80——fu—(0—l)(fu-f-to)
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for t==T, and | fit, ¢, ¢, ', ¢') | =7 | cl| c|oe®oAt: €)= y|cjo+1 gaoA (.€') for any c¢=0, ¢'€R

since >0, >0 and A(f, ¢)>0.
Then

;R(h,(t- 7)) ‘f(l, o, C') dt:‘;f[}l,(f, Y’)_tu]ﬂ ¢ ‘ic+leua7\_(t. <) dt

>vle °+‘(o—l)(t0+ao)_£dt = oo,

Thus, all conditions of theorem 6 hold and in virtue of it the solutions of (81)
hence the solutions of (5) as well, are oscillatory.
Corollary 3 is established.
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