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ON SYSTEMS OF RANDOM ORDINARY DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER

HENRYK UGOWSKI

In this paper we obtain theorems on the existence of solutions of the Cauchy problem for systems
(linear and semilinear) of random ordinary differential equations of the first order.

1. Introduction. The literature concerning the existence theory of random dif-
ferentiai equations is quite extensive (see e. g. the monographs [1, 5, 4] and the refe-
rences therein). [n this paper, using the existence theory for evolution equations in
Banach spaces (see [2, 8, 9]), we obtain some existence theorems for the above men-

tioned Cauchy problem.
In order to formulate the problem in question we need some notation. Let (Q, I, P)

be a complete probability space. By L7(Q, R) (p¢|[l, =] being a constant, R=the set
of all real numbers) we denote the Banach space consisting of all random variables
x:Q—R with finite norm

X[ =[ ] | x) PPE)” i pell, )

and

|| x| =ess sup|x(0)if p=co.
0fQ

Denote by Z the set of all complex numbers. For any A¢Z the real (imaginary) part
of A is denoted by Re A (Im ). For a random variable y:Q-—Z the functions |y|
Re y, Im y are defined as usual. We shall use the complex Banach space

Y=X+jX={y=x,+j%: %), %€ X} =L(Q, Z)
with norm Qy§=| |y ||l y€V. Let n be a fixed positive integer. The product spaces X™
Y™ provided with norms
Lxla=x ]+ oo+l Xals x=(xp 00 x,) €K,
By, =By B+ -+l vy iy,

respectively, are Banach spaces too. The limit, continuity and derivatives of random
functions with values in the Banach spaces introduced above are always understood
in the strong sense, and integrals of these functions are taken in the Bochner sense.

We shall consider the Cauchy problem

(1.1) w'(6)+ A(tu(t) = f(t), 0<t<ty,
(1.2) u(0)--u,,
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where £,>0 is a constant, #=(uy,...,u,), ' =(u,, ..., u)) and f=(f,...,f,) are vector
functions with values in X" (or Y”) and u,=(ugy, ... u,,) is a given element of X"
(or Y™). Finally, A(¢) is a linear operator (in general unbounded) determined by a matrix
[@;(8))xn» Where a,, are functions with values in X (or V). So we have

ABUE) = (T aOad)..«. Ta,Ouo).

As a corollary of appropriate theorems of [2] and [9] we obtain a theorem on the exis-
tence of a unique solution of the problem (1.1), (1.2).
Next we consider the semilinear system

(1.3) w'(£)+ A(t)a(t) = (Bu) (), 0<t=t,,

where Bu=(Bu, ..., B,u) and B, are some nonlinear operators. Using the appropriate
results of papers [8] and [9] we obtain two existence theorems for the problem
(1.3), (1.2).

Solutions of the above problems are taken in the classical sense, i. e. # is a solu
tion of the problem (1.1), (1.2) (or (1.3), (1.2)) if « is continuous in [0, #), &’ is con
tinuous in (0, £,]. and u satisties pointwise the problem in question.

Note that all the results of the present paper remain true if we replace the in-
terval [0, £,] by [f,, £,]. Then, of course, the initial conditions are taken at ¢,.

2. Assumptions concerning operators A(f) and some lemmas. First we consider
the operators A(f) appearing in (1.1) in the real case, i. e. in the space X". We intro-
duce the following assumption:

(20) a;: [0, (] XQ—R, i,k=1,..., n are such random functions that a;(¢)=a, (¢, )¢ X
t¢[0, ¢,). Moreover, the set

D={x=(x;,...,x,) X" 3 axpe X, i=1,...,n}
k=1

is independent of £¢[0, £,).
Under the above assumption the matrix [@;,(¢)],x,. £€[0, £,] determines operators

A(t): D—=X", Aft): D+ jD—Y"

by the formulas
A(t).v-:(k): lau(t)\'r ) :‘j 1""(‘)-\%)' x=(xy, ..., x,)€D,

Aty =A(t)Re )+ jA(E)NIm y), y=(Vy ..., V) €D+ JD,
where Rey=(Rey, ...,Rey,), Imy—=(Imy, ..., Imy,). It is clear that

A»(t)y=(h2lau(t)y.- cees E lanh(t)yk)' yeD+jD.

Lemma 2.1. /f assumption (21) is satisfied, then D and D+ jD are linear
dense sets of the spaces X" and Y", respectively. Moreover, A(t) and A (t) are linear
closed operators.

Proof. The linearity of D, D+ jD, A(f) and Ay(f) is obvious. It follows from [6]
(Section 3) that X7 is a dense set of \", where .Y, denotes the set of all simple real
valued random functions. Hence, in view of X7 D, D is a dense set of X". Conse-

quently, D+ /D is a dense set of Y. Arguing like in the proof of Lemma 5.3 of (8]
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one can show that A(f) are closed operators. llence, it easilv follows the closed-
ness of A¢).

Now we introduce the following assumption,

(2I) For any £¢[0, ¢,] the resolvent R(, Ay(f)) exists for all A¢Z with Re <0
and there holds the inequality

@1 BRO. At) B, = Ky(1+ 1))

K,>0 being a constant.

Assumptions (2.1), (2.1I), Lemma 2.1, and Theorem 2 of [9] imply that for any s¢[0, )]
there exists in X" a strongly continuous semigroup of operators e=/4(), =0. In view
of assumption (2.I) there exists a bounded inverse operator

AUt Y"—=D+jD, te[0, ¢
and there holds the equality
ANy =AY Re y)+jAHE)Im y), L€[0,¢), ye Y™
The closedness of the operators A(s), s¢[0, {,] and the boundedness of the operators
A7Y¢), t€[0,¢,] yield the boundedness of A(s)A~'(£). This enables us to make the fol-

lowing assumption.
(2.111) There are constants K,>0 and a€(0.1) such that

[ AS) — ABJA (@) = Ky [ s—E % 5,8, T€[0, ).

Now we state some particular case of the matrix [a(f)],x, involving assumption
2.)-(2.11). Put

(2.2) a,t, w)=a(e)(Hb (o), te[0, L), 0eQ, i,k=1...,n

and introduce the following assumptions.

(21V) ¢:]0, ¢+, =) is a uniformly Holder continuous function of exponent
ag(0,1).

(2.V) a¢ X is such a random variable that

ess inf a(o) K,
o(N

K3;>0 being a constant.

V1) b€ L=(Q, R), i. k=1,..., n and eigenvalues p(w), k=1,...,n of the matrix
B(w)=[b,y(®)],x, satisfy the inequalities
(2.3) ess inf(Re py(0) -Ky, k=1,...,n,

o N

where K, is a positive constant. B

According to Gerszgorin theorem [3] (p. 415), the inequalities (2.3) are satisfied if

(2.4) essinf[b(w)— E @) || =Ky i=1,...,n
wEn k=]
kbt

Lemma 2.2. Assumptions (2.AV)-(2.VI1) imply assumptions (2.1), (2. ) in the
case (2.2

Proof. The implication (2.IV)-(2.VI)=(2I) is obvious. To prove (2.II) note that
there exists a set Q,¢ 1" with P(©,) -1 and positive constants K, K, K; such that

(2.5) [ (@) | = Ks Re py(0) =Ky | pp(0) 2Ky
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for any 0¢Q,, i, k=1,...,n and

(2.6) c(tya(@)=K;, t€0, t,], ©€ Q.

For any £¢|0, £,], ®€Q, we have

(2.7) det (M — A(t, ©)) = [a(@)o(H]* det (n/— B(0)) = [a(@)c(O (1= (@) - - - (1= 1))

where p=A[c(f)a(w)]™!, / denotes the unit matrix (of the n-th order), and det is
the abbreviation of the word determinant. It follows from (2.5) that

W= m(@) [ =K (W), k=1

for any p’'¢Z with Re n’<0, where K >0 is a constant depending only on K, and K.
Hence, by (2.7) and (2.6), we have
|det (. I— A(t, )| =K (1 +| % Ye(fa(o)+ | 11y

for any »¢Z with Re <0, where Ko,=Kzmin{l, K;}. The above inequality implies
the existence of the inverse matrix
(M —A(t, @)= [dix(2 £ ©)]axn

for any A¢Z with Re A=0, £€[0, %)), ©€Q, and the inequality

(0t o) =K1+ A)7Y L k=1,...,n,
K,,>0 being a constant. Thus assumption (2.II) is satisfied. The existence of the matrix

A7t o), te]0, 4], 0€Q,

vields the existence of the matrix B7'(»), 0¢Q, and the inequality

A~Y(t, 0)=[c(fa(w)] 7' B~(w), tE[0, t) @€y
Hence we have

[A(s, ©)— A(t, 0)) A7z, ©) = [e(s)—c(B)][e(x)] 71

for any s, ¢ t€[0, £,), ®€Q, Consequently, assumption (2.11) is satisfied as well. This
completes the proof.

Now we consider the operators A(f) appearing in (1.1) in the complex case, i. €.
in the space Y”. We make the following assumption.

(2.VI) @, : [0, 2,)XQ—2Z, i,k=1,...,n are such random functions that a,(t)=a,(t-)eY
t¢0, to). Moreover, the set

D={y=(yy..., V)¢ Y":.f_la,,(t)y,e Vii=1,...,n}

is independent of £¢[0, £,).

Then the matrix [a@u(f)]axn t€[0,f) defines the operator A(f):D—Y" by the
formula

Aty = (:‘3 lau(‘)."/v cee ‘%‘anl‘(t)yh)‘y =Y. YED.

Arguing as in the proof of Lemma 2.1, we obtain the following lemma.

Lemma 2.3. If assumption (2.VI1) is satisfied, then D is a linear dense set
of the space Y" and A(t) are linear closed operators.

Now let us introduce the following assumption
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(2.VII[) For any £¢ [0, ¢,] the resolvent R(X, A(f)) exists for all L¢Z with Re 2=0
and there holds the inequality

BROL AW =Ku(1+2)7
K;;>0 being a constant.
Assumptions (2.VII), (2.VIIl) and Lemma 2.3 imply that for any s¢|[0, £,] there exists
in ¥ a strongly continuous semigroup of operators e ~“A(), £=0 (see [2], Section 2.3).

Finally, we make the following assumption.
(2.IX) There are constants K,,>0 and «€(0, 1) such that

BAO—ASATOR =K t=s]% b5, 1e[0. 4]

Arguing as in the proof of Lemma 2.2, one can prove that assumptions
(2.VII)—(2.IX) are satisfied in the particular case (2.2) under assumptions (2.IV)—(2.VI)
provided that

(2.8) b€ L=(Q, 2), i,k =1,...,n.
In the case (28) the condition (2.4) with b,(®) replaced by Re b,(w) is a sufficient
one for (2.3).

3. Existence theorems. First let us introduce some notation. For any interval
T=R and any nonnegative integer £ by C*(T, X') we denote the vector space of all
random functions u#:7T—X possessing continuous derivatives '), i=0,1,...,k We
abbreviate CY(T, X, X)=C(T, X). In the sequel we put T=[0, ¢ or T=(0, ). The vec-
tor space C(|0,¢,), X) provided with norm

o eq=sup{ u(t)|: £€[0, £}

is a Banach space. We shall also use the Banach space C®X[0,{,], X) (¢€(0, 1) being
a constant) consisting of all functions w¢C([0, ¢,], X) with finite norm

e, = o,y +sup | u(t)—u(s) | |£=s]=5: £ €[, &)

We extend the above notation to the case where X is replaced by X". Then
we have

CHT, X"y={u=(uy, ..., uy): ;¢ CXT, X), i=1,...,n},
C[0, Lo, X™)={u= (1, ..., u,): 4,€C[0, 4], X), i=1,..., n}
Norms in the spaces C([0, £,], X™) and Cr)([0, £,]), X") are given by the formulas
(3.1) ] 0,0 = supll| @() [l L€ [0, 4]}
and
[ u “i-‘.)[o. )" ] n, (0, 4+ sup {|| @ (O)—u(s) [[al £—s|=%: ¢ s€[0, £,]}

respectively.

All the above definitions can be extended to the complex case, i. e. to the case
where X is replaced by V.

Lemma 2.1 and Theorem 4 of 59) imply the following theorem.

Theorem 3.1. If assumptions (2.[)—(2.111) are satisfied and u,¢ X", f¢ CP([0, £,], X™)
(B€(0, 1) being a constant), then there exists a unique solution of the problem (1.1),
(1.2). The solution is given by the formula

w(t)=U(t, O)u, + {’U(t, S)f(s)ds,
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where U(t, s) is the fundamental solution of the equation
2'(t)+ A(t)z(¢)=0.

Taking advantage of Lemma 2.3 and Theorem 2.3.2 of [2], we can extend Theorem 3.1
to the complex case. Then, of course, assumptions of Theorem 3.1 have to be replaced
by the following ones: (2.VII)—(2IX), u,€ ¥", f€ CO((0, £y}, ¥™).

Now we consider the problem (1.3), (1.2) under the following assumptions.

(3.1) Assumptions (2.1)—(2.IID).

(3.11) We have B,:S—C([0, 1), X), i=1,...,n, where S denotes the set of all
functions ¢ C([0, £,], X™) such that u takes values in the domain of A*'(0) (a'¢[0, 1)
being a constant) and

A (0)u e C([0, £,]), X™).
(3.11) For any ¢¢[0,¢,], we C([0, £,]), X™) we have
[[BA @) =N (I +] a]nn) i=1coun

where N, is a positive constant and  u ;0 is the norm defined by (3.1) with
t, replaced by ¢ (for ¢£=0 this norm equals | 2(0)],).

(3.IV) There is a constant B¢(0,1) and for any a>0 there is a positive constant
N, = Ny(a) such that if

(3.2) u, veC([0, ), X™),  wln ot [ 2]n 0. 0=as
then
| BA=(0)u)(t)—[B;A=* (0)yo)(£) || < Nodp(|| 4—2 [, 10. 1)), £E[O, Lo i=1,...,n
where
sh 0=s=1,
d"(s):{s, s>1.
( (3.}/)) The element u, appearing in (1.2) belongs to the domain of Av(0) for some
veE(a', 1),

(3.VI) For any a>0 there is a constant p’'=p’(a)€(0, 1) such that each operator
B;A=«(0) (i=1,...,n) maps the set

Wia, 8)={u e C¥([0, t), X™): || a|D, . =a}, d=1—0
into a bounded set of the space C®)([0, £,],X).

(3.VIl) For any a>0 there is a constant N;=Nj@a)>0 such that for any set
Uc=W(a, y—a’) and any £¢[0, ¢, i=1,...,n we have

m(|B;A— (0)U](t))= N3 sup {m(U(v)): 0=t=t},

where U(t)={n(t):u¢ U}, m and m, denote the Hausdorff’'s measures of noncompact.
ness of the spaces (X, |-|) and (X" | -,), respectively.

One can easily find that assumptions (3.1)—(3.1V) and (3.VI) imply the following
ones, respectively.

(31I') The operator B appearing in (1.3) is defined on S and takes values in
([0, £), X™).

(3.1") For any f€[0,¢,], ue C([0, £,],X") we have

[[BA=(0)a] (&) |y =nN(Q + | #{[n. 0. 1)-
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(3.1V’) For any a>0 and any u, v satisfying (3.2) we have
| [BA - (0)a)(t) — [BA~ ' (0)0)(£) || nNodp(| =7 o o))y £E[0, 8]
(3.VI") For any a>0 the operator BA~+'(0) maps the set W(a, y—u’) into a bounded
set of the space C®)[0, £, X™).
Taking into consideration the definition of the norm ||- /|, and Lemma 4.7 of [7]
(see also the proof of Lemma 3.1 of [8]), we find that assumption (3.VII) yields the fol-

lowing one.
(3.VII') For any @a>0 and any U=W(a,y—d’), £€[0,¢,] we have

m,(|BA=<"(0)U)(£))=nNysup {m (U(7)): 0=tt},
where
BA-=(0)U = {BA~O): u¢U}.

With the aid of paper [9] one can show that the results of Section 2 of [8] remain
valid in the case of real Banach spaces. Consequently, the results of Sections 3 and 4
of [8] are valid in this case as well. Now observe that assumptions (3.II')—(3.IV")
(3.VI'), (3.VII') imply that the operator B satisfies assumptions (3.1)—(3.1V), (3.VI), (3.VIh
of [8] with N=1 and with X replaced by X". Hence, using Theorem 3.1 of [81
(in the case of a real Banach space), we obtain the following theorem.

Theorem 3.2. If assumptions (3.01)—(3.VIl) are satisfied, then the problem
(1.3), (1.2) has a solution

we CO[0, £,), XN CH(O, £,], X*), 8=y—a’

such that
A (O e CO01,], X7).

Particular cases of the operators B, similar to those of [8] can be considered
Let us consider, for instance, operators B, (i -1,..., n) given by the formula

(3.3) (Bau)t)=f(+, t, u(t), u(oit), ELu(?)).
Ea(w (1)), G (u(t)), GluCx ()

where @(@,(£))=(Uy(@4(E) - - ., 4, (9,.(8))) and u(y(2)). u(x (¢)) are defined likewise.

We make the following assumptions.

(3.VII) f,: QX[0, t,] X R"—R (i=1,...,n) are random functions satisfying the in-
equality

| fi(©,0,...,0)|s5(0), 0€Q,

where &,¢.X is some nonnegative random variable and Q, ¢TI is such a set that P(Q,=1).
(3.IX) There are constants €, €,¢(0, 1), N;>0 such that for any a>0 we have

Lflo, oty ..., tg)—fho, ' ), ..o ) | SN E=E [ (L@ o) gy |+ |y — |
=y |+ gty |+ Uy +ug—ug ], =1, 00

for any o¢Qy, ¢, t"€ [0, bo], wy, ), t,, u € RY ty 4, €R", k=1,2,5, 6, where

|up—t, | = Eﬂ Uy —t,, | Ry={weR": |w|=a).
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(3.X) The element u, appearing in (1.2) belongs to the domain of Ar(0), v€(0, 1)
being a constant.

(3.XI) The operators F;: X"—X" (i=1,...,n) are completely continuous and
G,: D/—~X" (i=1,....,n) are linear closed operators, where D,=X" include the do-
main of A*(0), a'¢(0, y) being a constant. .

(3.XI) The functions 0, Wi %ix:[0, f] =R, i, k=1,..., n satisfy the inequalities

0=0, (=), 0=y, =()<t, 0=yu()=t

and are uniformly Holder continuous.
Assumptions (3.VIIl) and (3.IX) yield the inequality

(3.4) flo, touy, .. ) | ZE(O)EN(uy |+ o+ ug)

for any (o, £, 1y, ..., 1;)6Q,<[0, £] <R, i=1,..., n where N is a positive constant
random and &,¢.X is some nonnegative random variable. Arguing like in [8] (after the
inequality (5.5)), we conclude that assumptions (3.VII)—(3.XIl) and the inequality (3.4)
imply assumptions (3.1)—(3.VIl) for the case (3.3). Therefore Theorem 3.2 holds true
in this case.

In the considered particular case we may take, for instance,

Gi=AY0), Eu=h( u,), ueX", i=1,...,n,

where 4;: [0, 2)=R" (i=1,..., n) are continuous functions.
Now we state an existence and uniqueness theorem for the problem (1.3), (1.2).
[FFor this purpose denote

F=11C9([0, t,], &), F,= ’be‘”‘(lo- t) X" Q={g€(0, 1)}
4

Theorem 3.3, Let assumptions (3.1)—(3.0l1), (3.V) be satisfied and suppose
B:A-<(0) (i =1....,n) mapF, into F. Moreover, we assume that there are constants
N.>0, v ¢(0, 1 —v) such that for any a=e and any u, v satisfying (3.2) we have

[B.A-(O))(t)—B.A*(O0)0)t) || = Ny(In @) u—v 0,0 L€[0, &), i=1,..., 1.

Then the problem (1.3), (1.2) has a unigue solution u in the set F,NCY((0, &), X")
Moreover, we have

u, A (0)u € CO0, to), X"), g=v—a’.

To prove Theorem (3.3) we have to transform assumptions concerning the opera-
tors Bi(i =1,..., n)onto assumptions for B(see (3.1), (3.1I')). Next we apply Theorem 3.2
of [8] (for a real Banach space) with N=1 and with X replaced by X™.

The particular case (3.3) is an example illustrating Theorem 3.3 provided f; are
independent of the fifth and sixth arguments. Then, of course, it is necessary to mo-
dify assumptions (3.VIII), (3.1X) and (3.XII), to retain (3.X), and to omit (3.XI).

Taking advantage of paper [8], one can extend Theorems 3.2 and 3.3 to the com-
plex case. For this purpose we have to make assumptions appropriate for that case
(clearly, assumption (3.1) has to consist of (2.VII)—(2.1X)).
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