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APPROXIMATION OF A CONTINUOUS SYSTEM
BY POINT SYSTEMS

K.-H. FICHTNER, M. SCHMIDT

Several scientific and technical problems can be described by partial differential
equations of the type
v 1
(1) = o AUHS.

A more precise model is to take into account stochastic disturbances, i. e. to the right
hand of (1) there have to be added corresponding source terms. Often this disturbance
occurs as the so-called white noise. So we regard the stochastic partial differential

equation
(2) D (e b)) Avx. O+ f(x, D+, DEE, 0.

Note that (2) is connected with the idea of diffusion and generation of particles in
random spartial-temporal points. Therefore the solution of (2) could be considered as
the limit of a suitable discrete particle model.

In this paper we prove the existence of such a solution. The proof is based on
an approximation of decomposable Gaussian processes on Polish spaces by Poisson
processes.

1. Introduction.
I.1. The Poisson process. Following 3], we introduce the notions and notations

in this section. Let [A, d,] be a Polish space, 9 the c-algebra of the Borel sets in
[A, d,), ¢ the ring of the bounded Borel sets. Further, M denotes the set of all inte-
ger-valued measures on 9 being finite on €. Let 9 be the smallest o-algebra of M-
subsets which makes the function

OAD(X), PeM
measurable for each X from . A measurable mapping from a probability space |Q, ¥, P)

into [M, M is called a random point system in [A, d,]. the distribution on (M, Mm)
generated by such a random point system is said to be a point process with phase

space [A, d,).
To each measure /7 on |[M, M|, a measure p, on [A, 2], called the intensity mea-

sure of H, is assigned by
(X)) = [O(X)H(d®), XA
Let X, ..., X, be clements of 3. The measurable mapping
O[O .., DX
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Approximation of a continuous system by point systems 397

from M into N™ transforms each measure / on [M, M] with
H{®: ®(Xi)=})=0, i=1,..., m

into a measure Hx ... v, on [N7 y(N™]. If H is a point process, the measures
Hx1 ______ x,, are called the finite dimensional distributions of H.

To any @-finite measure p on [A, 1] we can associate the Poisson process Py,
with intensity measure p characterized by

m
FR0X s = e T™ i>=<x (X))

for all finite sequences (X,)7, of pairwise disjoint sets from €. Here m, A>0 denotes

;‘he Poisson distribution with expectation A. For all @-finite measures p on [A4, A} it
olds

(111 y (P(u))"':P(nu)
where (P,,)™ is the n-th convolution-power of Py, (cf. [3]).

1.2. c-additive processes

12.1. Definition. A random process n=(n(B). B¢Q) on [Q, §, P] is called
o-additive if for all sequences (B, of pairwise disjoint elements from Q such that
Up, B.€Q, we have

P(Z n(B)=n( uyB)=1.
122 Definition. A o-additive process n=(n(B), B¢Q) is called decomposable
if for all finite sequences (B, of pairwise disjoint bounded measurable sets the
random wvariables W(B,), . .., 2W(B,,) are independent (cf. Feldman [2]).

If v is a random point system in [A, d,| then the family v: = (W(B), B¢g) re-
presents a c-additive process. Moreover, if the distribution of v is a Poisson pro-
cess then v is a decomposable process. The white noise based on the Lebesgue
measure on [RY, 9] represents a decomposable process in this sense (cf. 4D _

1.2.3. Definition. For each n¢Nlet n and n be o-additive processes on Q. ¥, P
The sequence ™ is said to converge toward n if for every finite sequence (B,
of elements from € the random vector [\"(B,), ..., "X B,,)] converges weakly to the ran-
dom vector [n(B)),..., n(B,)). Definition 1. 2. 3. can be generalized as follows:

1,2 4. Definition. Let n™ = (n{")-0 and, n=(N,)zo be families of o-addi-
tive processes on (Q, 3, P|. Then the sequence n® is said to converge toward n if
for each finite sequence (t,)", of non-negative real numbers and for every finite
sequence (B)", of elements from @ the random vector [n{™(By), .. .. n‘,’:(B,,.)] con-
verges weakly to the random vector . (By), . .., Wyml Bl

1.3. A special type of a stochastic partial differential equation. We consider the
stochastic partial differential equation

(13.1) 90 (x, £)= -y Av{x, £)+f(x, O)+0(x, DE(x O
A\vith initial value v(x, 0)=¢(x), x¢R', £€R*,

The equation (1.3.1.) can be interpreted in the following way: v describes the
charge density of a continuous medium consisting of “very small particles”. The term
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1/2Av(x, ¢) in (1.3.1.) corresponds to a diffusion of the particles. Furthermore, the
source term f(x, ) describes the intensity with which positive (f(x, £)>>0) or negative
(f(x, £)<0) charged particles are added. Finally, a stochastic source term describing
the stochastic disturbance is added. o x, £) is the intensity of the noise. It must be
noted that in the higher dimensional case (x¢R?, d>1) the mathematical concept sym-
bolized by (1.3.1.) is not quite clear. A treatment of this case seems to be possible by
using the convergence theorem 1.3.6. given below. Firstly let us explain the main
idea. Let ¢ be a bounded measurable function defined on R? and Ki(-,-), >0, be
the stochastic kernel on [R?, 9(?] given by

Ki(q.-)=N(q, 26,.)

Here Mg, 1.4, ) denotes the normal distribution with the expectation vector ¢ and the
diagonal matrix A& as covariance matrix. Then

(1.3.2) Al): =KLy, )o(y)dy

describes haow the charge present at initial time zero diffuses until the time £

The discretization of the process corresponding to the source term occurs as fol-
lows: Let f be a bounded measurable function defined on R?R*. Furthermore, let
T+ and 7 be the supports of the functions f*: = max{0, f}, f/: = max{0, —f}
The non-negative function | f| is the density of a measure p, on[R?*1, 9(?+1]. ®" deno-
tes a random point system in R?*! with distribution P(,,,,. 7Thus ®"describes the con-
figuratiog of charge points which are added spatially-temporally with mean intensity
n|fl If®{(x, t)}=1 then a charge unit of the amount 1/ is added; the charge is
either positive or negative depending on the position of (x, t). Now the contribution
of this source process to the charge density until time £>0 is given by

. 1. . ~
(133) D)= [(Keoly, ) LoD+ 8N ey O (3 D — L~y D] 3, 7))
The disturbance term is transformed analagously. et ¢ be a bounded measurable func-
tion definedon R?xR+*. o? is considered as the density of a measure p, on [R7+, 9+!]-
We define a measure p on [R4+2, 9(?+2] by

1 ;e .
Mo o=Hg X 3‘(01'1"0—1)-

Let ®" be a random point system in R?*2 with distribution P.,). Analogously to o
the random point system ®”" describes the configuration of charge points added with
mean intensity no? including the “sign” of the unit charges. Differently to the effect
of the first source process individual charges of the value n~'? are generated. The
contribution of this second source process to the charge density until time £>0 is
given by

(1.3.4) CE) = V2 [ 2(Ki—el 0 M 0f(®) +8y( ) oy (ND (] y, T 2]).

Each particle should give a contribution to the entire charge and evaluate indepen-
dently on the other ones. These requirements do not follow from the properties of

the Poisson process. Therefore, we assume that @" and ® are independent. Consequently
the entire process can be defined as the sum of independent random variables

(1.3.5.) wM(+) = Af+)+ Cm(e)+ DI -).

By the normalization 1/n, respectively n~'”, the “potential” of one generated particle
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decreases when 7 increases, whereas the average number of the particles increases,
i. e. the produced charge is “smeared over” in a certain manner.
1.36. Theorem. a) The sequence of the c-additive processes u™ =(u"(B), B¢ 9,

t=0) converges (in the sense of definition 1.2.4.) to a c-additive process u=(u/B),
Bet, £=0).

b) For each finite sequence (L))", of non-negative real numbers and for every finite
sequence (B;)", from ¢ the random wvector [u,(By), ..., u;,(By)) is normally distri-
buted. The distribution is characterized by the expectation values

AII(BI) + r Kl(—*‘(."' B,)f( ,"v 1)1(0.."_) (t)d[ _": r]l 1 Z/'ié m,
and by the covariances
‘ Kl‘.- f( Vs B‘)K;I_—r( Y B/')G’(}’y T) [0, min {t‘. tj_}) (t)d[ v, T]. 1<, yé m.

Let us note that the process # can be interpreted as the solution of the integral equa-
tion corresponding to (1.3.1.). Theorem 1.3.6. can be proved by limit assertions specified
in the next section.

2. A limit theorem. Let v be an ¢-finite measure on [4, ‘)[] and ®" denote a

random point system in Ax{—1, 1} distributed according to P . Thus by
(vx (6.+b_|))

OF =;1¢ [ 2l (x)0"(d]x, 2])

we define a sequence of random signed measures y on [A, 9]. The sequence vy
converges in the sense of definition 1.2.3. to a decomposable process y. If v is the
Lebesgue measure on [R?, 9(?] then vy is the white noise process; if v is the counting
measure on a countable set A, then y({x}), x¢ A forms a sequence of independent
standard normally distributed random variables. Moreover, the following statement
holds.

21. Theorem. Let g,,..., g, be functions which are integrable and square
integrable with respect to v. Then the distribution of the random wvector

S 2L, 2] e [ 20", 2))]

converges weakly to the normal distribution N(O, X, ) where the covariance matrix
I=(X,) is given by

%= [ &NV, 1=i, j<m

We will prove theorem 2.1. in section 3.
If ®" is a random point system in A distributed according to P then by

¥ = L)

we define a sequence of random measures v on [4. Al v(™ converges in the sense
of 1.2.3. to the trivial decomposable process. This follows from the law of large num-
bers and the convolution property (1.1.1.). :

22.If 8.,..., gy are v-integrable functions then the random wvector

l—— [ [ @ () da)s o vn Lam(-~)®nGd))
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converges weakly to the Dirac measure corresponding to the vector

[[2(x)Vv(dx), ..., [gux)v(dx)].

3. Proof of theorem 2. 1. The theorem will be proved by using the central
limit theorem for random vectors. We apply the latter one for a special case.

3.1. Let (n,), be a sequence of independent and identically distributed random
vectors on a probability space [Q, ¥, PJ.

Assume that the mean vector of n, is zero and the covariance matrix ¥ of n,
exists. Then the distribution of the random vector n='?X7_ 1, converges to the normal
distribution M0, X, +). (cf. [1]).

If g.,..., g» are functions which are integrable and square integrable with res-
pect to v, the theory of the moment measures enables us to determine the first and
the second moments of the random vector

\-,‘_—n: [[ 28 ()0 (d[x, 2]),. .., [2gn(x)(d[x, z])]

The moment measures of random point systems are introduced as follows (cf [5])
Let v be a random point system on the Polish space [A4, d,] distributed according
to Q Let #(A) be the set of all continuous functions on A with compact support. For
any g-finite measure o on|[A4, 9(] let a® be the k-th power of a, i. e. a® is the measure
on [A* 9*] defined by

ffll h(x)a® (d]xy, ..., x,,]);,-fll [hix)a(dx), hy ..., he€ X (A).

32. Definition. Q is a distribution of k-th order if

Th(xy, ..., x/.)P’E,(d[Xp o ) =LA @B Xy, - x]) QD)

exists and is finite for each continuous function h on A* with comvact support. In
this case pg defines a measure on [A*, A*| called the k-th moment measure of Q.

If @ a @-finite measure on [A, 9] for Q =P, then the following relations hold
(cf. [5], p. 400):

f’t(x)P'p(agdx) = [ h(x)a(dx), heH(A)
and
(3.3) fhl(xl)h2(x2)p3>(a) (d[xy, xa])= [ hy(x)hox)a(dx)

+ [ hy(x)a(dx) [ ho(x)a(dx), hy, hy€ K (A).

By usual extension procedures one can prove that (3.3) holds for all functions 4, 4,
hy which are integrable and square integrable with respect to «. Therefore, if we con-

sider the situation in theorem 2.1 i. e. if we suppose that a=rnv> - (8, + 8_,) then

E(Jl"; [ 28,(x)®"(d[x, 2)))=0, 1<i<m
and
(3.4) E(—:'— [ 2g(x)®"(d[x, 2]) [2gx)D™(d|x, 2])= [ g(x)g (x)WV(dx), 1=i, j<m.

LEL (W))7_ | UE ¥ HUe raumy Ul HHACPCIUCL TalUvIL puint oyctame idantically digtribint
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ed according to P - Then the sumX? @, possesses the same distribution

(Vx‘?(SH-G_I)
v i ra_tyy, B the random point system ®” (this is just the contents of (1.1.1.))

Consequently, the random vectors

[ [z8((x)D™d[x, 2]), ..., [28n(x)P"(d[x, 2])]
and

I (2800 (dlx, 2., [zeu(x)0(d]x. 2])
possess the same distribution whereby the vectors

([ Jzg(x)®Ld[x, 2]), ..., [28u(x)®{d[x, z])])_,

are independent and identically distributed. The mean vector and the covariance mat-
rix of this distribution exist (cf. (3.4)). Hence the assumptions of 3.1. are fulfilled.

4. Proof of theorem 1.3.6. Firstof all, there can be stated an assertion concern-
ing the integrability of the term K;—«(y, B)./0s (%), t€R*, B¢ L? considered as a func-
tion of the variables y and t. From the identity

d d
[ Ke(y, P [ b 0o(Ddly, T]=¢T1 (b;—a)
A Jn

which is valid for all d-dimensional rectangles x7_,[a; b,] we come to the following

conclusion denoted by 4.1, 4.2, 4.3 and 4.4.
4.1. If the density of the measure v on [R+!, 9(?*] is bounded, then for every
positive real number ¢ and every set B from g7 it holds :

TKe (¥, B)lo.o(tV(dy, t])<oo.
The assertions 4.1. and 2.2. are justified.

4.2. For every finite sequence (B,)”, from ¢4 and every finite sequence (£),
from R+ the distribution of the random vector

[DG(By). .. .. DY (B
converges weakly to the Dirac measure corresponding to the vector
[ Ko (e B oy (O F (0 DLy, s [ Ky (30 B o X F (9, DMLy, <)
Proof. From (1.33.) we know that for all B¢ and £¢R* it holds
D(B) = - [ (Keei . BYlo.of0)+85(B) Iyt WL+ (9, ) — L7y, )®dl y. 7))

Let (B)", be a finite sequence from £¢ and let (£)", be a finite sequence from R*.
The function |f| is the density of the intensity measure p, which was assumed to be
bounded. Applying 4.1., we obtain (for i=1,..., m)

E(D$7) (B)=[ Kt, — (¥ B) Lo (®) f(y, )]y, 1]

=[ Kl‘ W B) los (1) (Ir+( y, ) —I—( v, O [y, ).
Thos the assumption of 2.2, is satisfied. Further, Proposition 4.1 and the relations
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0=KXy. B)=Ki(y, B)sl, yeR?, Beg? L¢R*

lead to Proposition 4.3.
4.3. If the density of the measure v on [R7*!, 9(?+!] is bounded, then for all ¢
from R+ and all B from ©7 we have

fK;_!(y, B) Im‘t,(t)\‘(d[y, ‘t])< 0.

Propositions 4.1. and 4.3 are used in order to prove
4.4. For each finite sequence (B,)™, from ¢ and each finite sequence (¢, from

R+ the distribution of the random vector
[CE(By). - - CS’:(B,,)]
converges weakly to the normal distribution MO, X, .) whereby
Z,,-=fK,‘_ (3 B)K, (. B, min et (X y, Dl y, Tl 1=i, j=m.
Proof. From (1.3.4.) we know that for each B¢ Q7 and £¢R*

c;n)(B)z-\;i S 2K (v, B) Loa(x)+8,(B) in(1)@"(d] ¥, =, 2])
Let (B;)", be a finite sequence from ¢4 and (/)" , be a finite sequence from R~ The
density o? of the measure p, is bounded. Thus the functions g defined by

gy, 1) ':K:’f'r( Y B.)/(lul>(T)'%éy(B,-)l{t‘)(f)- i=1....m

are integrable and square integrable with respect to p,, i. e. the assumptions of Theo-
rem 2.1. are fulfilled by

[C‘[’I)(Igl)- AR C;:(Bm)]
The first and the second moment of the distribution of this vector can be computed
by means of (3.4.). So the proof of 4.4. follows from Theorem 2.1.

The assertions 4.2. and 4.4. imply the validity of Theorem 1.3.6. because for each
finite sequence (¢)”, from R+ and all finite sequences (B,)” from ¢ we have

[u((:)(Bl)- Ty u((::(Bm), =
(A (B)+CPXB)+DAB,). - - -1 Ay, (By)+CP(By)+ DX Byl
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