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ON THE BOURGIN — YANG THEOREM FOR
MULTI-VALUED MAPS IN THE NON-SYMMETRIC CASE, i

MAREK IZYDOREK

1. Introduction. The Borsuk — Ulam theorem, which states that for every conti-
nuous map f: S"—R" there exists a point x¢S” such that f(x)=/f(—x) has many gene-
ralizations proceeding in various directions.In some of these generalizations the sphere
is replaced by more general space and mappings by compact fields or by multi-valued
maps. In particular, the author has proved the following theorem (see [4]).

Theorem(l.1).Let X—R" ¥+ (k==0) be a Borsuk's set (byv Borsuk's set it is meant
a subset X—=R"*+\ which is compact and the origin lies in a bounded component
of RN X) and ¢: X—R" be a multi-valued admissible mapping. Then the cover-
ing dimension of the set

Ao={x€ X: 3x>0 such that —iv¢.X and @(x) 1 o(—ix) 7}

is not less than k.

Recall that an u. s. c. map¢: X—VY is admissible if it admits a selector y: X =V
which is a composition of acyclic maps (see [1, 3]). On the other hand, infinite dimen-
sional case of the above theorem for single-valued maps has been proved in [3]. Let
E= denotes an infinite dimensional Banach space and let £=~* be a linear, closed
subspace of E= of codimension k. This theorem can be stated as follows:

Theorem (1.2). Let X be a closed, bounded subset of E= for which the origin
is in a bounded component of E~> X and let f: X—E=="=' be a compact vector field
(i. e. a map of the form f(x)=x—F(x) where F(X) is compact). Then the covering
dimension of the set

Ay={x€X: 3~>0 such that —ix €.\ and f(x) = f(—Ax)}

is not less than k.

If X=E=, a mapping ¢: X-+£= is said to be an admissible multivalued compact
field if the associated displacement mapping ® from X into £ defined by ®(x)={x—y,
yeo(x)} is an admissible multi-valued compact map (comp. [2]).

The aim of this paper is to combine theorems (1.1) and (1.2).Specifically our
theorem is:

Theorem (1.3). Let X be a closed, bounded subset of E< for which the origin
lies in a bounded component of E~\ X and let ¢: X-—FE= * ' be a multi-valued
admissible compact field. Then the covering dimension of the set

Ap {x€X: =>0-hxeX and o(x) o(—hx) 't D}
is not less than k.
For k-0 we have the multi-valued version of Joshi's theorem proved in [7] by

W. Segiet.
2. Compactness of A,. Analogously as in [5] we prove the following two lemmas.
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Lemma (2.1). The set A, is relatively compact i. e. A, is compact.
Proof. Let {x,}.: ~ be a sequence of points in A,. Then for each n€¢N there
exists a positive real number 2, such that — 2,x,€ X and

(P(xn) 0 (P( - ;‘nxn) + @'

From the definition of a multi-valued admissible compact field we have that (x,—®(x,))
(X, —®(—h,x,)) - D for neN, where @: X—£~ is the multi-valued admissible
compact map associated with the compact field ¢. Thus for every n¢N there is a
point y,€E= such that y,€(x,—®(x,) and y,€(—Ax,—®(—1,x,)). Let’s denote
't = x,—y, and z,: =—Ax,— ¥, for each n¢N then (12 )X, =2l —226D(X)—D(X).

The algebraic difference of compact sets is compact so there is a subsequence
{00y + D)x, Jiew =1{2) —22) . x of the sequence {z)—27}.¢~ which converges to a point

{ { {
z,€ E~. Moreover, from the sequence {,}; v we can choose a subsequence {7, }s v
1 Is

which converges to a positive real number %, Therefore we have

2! _72
P
1 i Zz
ot s, %o
,\‘,,IJ— R lH\'GX.

Is

Lemma (2.2). The set Ao is closed in X.

Proof. Let {x,). ~ be a sequence of points in A, which converges to a point
X,€X. There is a sequence {V,}a¢ such that for each n¢Ny,=—k,x, 1,>0 and
o(x,) 0 o(y,)+ . By the lemma (2.1) we can choose a subsequence {y,,l},(,\v of {¥unen
in such a way that ,\',,'»[j:y,,(.’( and X,,”__’..k‘,>0. We have ¢(x,) 1 9( yo)+ @ because
¢ is an u. s. ¢. map. Moreover,

140 ).x, =X, +A, X, =X, —(—hpX,)=Xy =
( 11) ’ll "1 n n ’l[ ( ’I[ ’Il "‘ J’I

Ll {

I l—00 l l=
(14-2). X Xo—Yo
thus v, = —rex, and x,€ Ag.

So we have proved that the set A, is compact.

3. The main result. Now we prove the following theorem:

Theorem (3.1). Let X be a closed, bounded subset of E= for which the origin
lies in a bounded component of E= X and let ¢: X—+E==*"1 be a multi-valued
admissible compact field. Then the covering dimension of the set

Ao {x€X, 32>0 such that —Ax¢.X and o(xX) N o(—2rx)+ D}

is not less than k.

Proof. Assume contrary that dim Ae<<k.

Then there exists a single-valued map g: X —~R* with the following properties (see
proof of the theorem (3.1) in [4]):

(1) if o)1 o( rx)i D for some x and A>0 then g(x)+-g( -Ax)
(2) ¢(.\) is compact.

We can define a map (¢, @: X ~E=~" 1OR~E=""1 as follows
(9, gx)={y+gx), yeo(x)).
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Proposition (1.8) in [2] implies that the map(o, g is the multi-valued admissible com-
pact field and we can use theorem (3.1) for k=0 proved in [7]. There exist a ponit
x€X and a positive real number A such that (@, g(x) > 1(9, g{—Ax)=+J but this implies
v+ 8(x)=y,+8&(—2x) for some y,€¢(x) and y,€9(—Aix) thus y,=y, and gx)
— g(—2x). Consequently ¢(x)1¢(—2rx)*+@ and g(x) = g(—Aix) but in view of the
condition (1) we obtain a contradiction. Hence we have dim A,=#% and the proof is

completed.
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