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GEOMETRY OF THE TANGENT BUNDLE
OVER 2-DIMENSIONAL HYPERBOLIC SPACE

HALINA FELINSKA

The 2-dimensional Poincaré model of the hyperbolic space is well-known. Our
considerations are based on this model. It is a 2-dimensional riemannian manifold £,

with a support
Ly={(x', X)) €R?: x*>0}.

The riemannian metric g in £, is given by
k
(;;)’ 0

g (4 ) - Gl

where & is arbitrary positive constant ([1, 3, 4]). The significance of the Lobachevski
geometry in mathematics and physics is obvious for everybody. Thus it seems to be
interesting to investigate the geometry of the tangent bundle over Lty with the pseu-
doriemannian metric g¢ (a complete lift of g). The paper is devoted to this problem.
Let (TL, g°) be the tangent bundle over £, with the metric g, where g¢ is a
complete lift to 71, of g, [5].
The matrix g in the local coordinate system (n=! (U), x=(x", x4 YL V) on Ti,
associated with a local coordinate system (U, x=(x!, x2)) on £, is of the form

_wna L)
(x2p ()
%2 y2 k?
R N
(850 (1 2% 3, Y1)
AB ’ ’ ’ k2
S 00 0
(x?)?
ke
0 (i ¢’

The index of g is equal to 2. .
1. We will find and investigate the isometry group of (T4, g°).This group is de-

termined by 1-parameter transformation groups of 7f, generated by the Killing vec.
tor fields of this manifold. In order to determine a basis of a Lie algebra of Killing
vector fields on Tty we have to find a basis of a Lie algebra of Killing vector fields
on £, It leads us to the solution of the following system of partial differential equa-

tions:
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Geometry of the tangent bundle over 2-dimensional hyperbolic spacé 47

0y K (!, x0)——5 K2 (x', x%)=0,
0y K' (x1, x2)+0; K2 (x, x?)=0,
9, K3 (x1, x8)——5 K? (', x9)=0,
vhere K (x%, x?)=(K' (x!, x?), K? (x', x?)) in the local coordinate system (U, x). It turns

ut after some calculations that the following vector fields form the basis of a Lie
lgebra of Killing vector fields on £,:

K (', 3= [ (P (), 2 2],
K (et %) =[x, 2,
K(x’, x?)=[1,0].
[he vector fields K, K, K are complete ones on £, The vector fields K", K” K"

vertical lifts of K K K) and K‘ K‘ Kc (complete lifts of K K K) form the basxs

)f a Lie algebra of complete Knllmg vector fields on Tf, (see [5]) These fields in
‘he local coordinate system (n—! (U) x) have the form

K? (x% x2, ', y1)=1(0, 0, 7 ((x1)2—(x%), x' x?,

ll<" (%', x3, ¥', y)=[0, 0, x1, x?],

l:<" (4 x% ¥, y1) =10, 0, 1.0],

Ke (6 % 3, yh)= [ P =), 5 2% 61 1 x? y2, 0 it 7],
Ko (x' % 1, y) =[x, o 9t 2],

I;(‘(x‘, x2, v, y¥)=[1, 0, 0, O].

i
Now, we are able to determine l-parameter transformation groups 9%, ¢°(i=1, 2, 3) of
Tty generated by K°, K¢, respectively. We have

i i

1

07 (£, (x1, X% ¥, y)) = (!, &2, o (R —(x0)) £+ y1, X' X2 £4y2),
2

Q7 (8, (x, x2, 1, ¥2))=(x', x%, tx'+ ¥, tx¥+y?),

3

07 (¢, (X', x% ¥', ¥)=(x', x% y'+¢, y2),

1 =2 (x4 (x2)2)+Axt 4x?

®° (8, (xt, %, -"l'y'»‘(:-«xl)ni(x-)')luxl+4' () 4 () — a4
A0 [(ex =20 —(ex?)] +8ex? y? (21 —2)  Bex? y! (2—fx1)+4 y?[(£x1—2)2—(tx2))
B [£2 () + () —dext + 4 ’ (£ ()2 (x%)%) —4ex! + 4] )

2
Q° (8, (x% X%, y', yY))=(e' x', &' x%, e y', &' ¥*),
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3
0° (8 (&% X2y y))=(x1+1, x2, ¥, y2),
for (¢, (x', x% y' ¥))EeRXTt,.

We denote by /1 the isometry group of T'f, generated by transformations defined by

the above formulas. /7 is the maximal isometry groups which preserves fibres. The

special attention has to be devoted with subgroups /1, and H, generated by I-pa-
1 3 1 2 3

2
rameter transformation group 9% ¢% ¢? and ¢ ¢¢ ¢ respectively.
The subgroup H, of H is normal one. It follows from the fact that the Lie alge-
bra of H, is an ideal of Lie algebra of complecte Killing vector fields on Tt%,.
Theorem 1. The group H, acts transitively on fibres of the tangent bundle
over £,
Proof. Let us fix arbitrary points (x!, x?, 21, 2%) and (x!, x% y', y?) of the fibre

! ((x!, x?). The isometry (p,’f ° (pf: where #,=y'—2!'+ x! and t,:y ;,i,maps
(x', x%, 2', 2%) on (x', x2 y', y?).

Let GL (2, R)* be a subgroup of the linear group GL (2, R) consisting of all ma-
trices with positive determinant. The action ¢ of GL (2, R)* on £y is given by the

formula
a B _az+B
(p([‘Y }'2)"7_1-{?8_’

22—y
X2

5

where the identification £4)(x', x)~z= x‘+t'x2 is used for convenience. Then the
action y of H, on Tt, is of the form:

wi GL(2 R X Thy . Tty
Wi (g (X X YL ) e (0 (2 (5, X)), 340, 0 (8 (x', X))

This action is not transitive on 7'f, Moreover, we have
Theorem 2. (TL,, H) is a homogeneous pseudoriemannian manifold.
Proof. It is sufficient to show that the group A acts transitively on TL, Let

us fix arbltrary pomts (%}, x3, y', y9),(x%, X3, ', y*) of Ti, The isometry (p,. ° (p,‘ o

‘P‘. ° ‘P’- ° (pfi ° ‘Pfl ’
y2— X — X2 Xyl xe
where £ = y‘,y’ b=yl —y'— l’_;'y” x!, t,=ln%,— V=X xt, ts—Tx'y’—,

ty= Y=y 2 EEZE maps (x, 1,y on (<1, X, ¥ 9)

2. Let 57 be a Levi-Civita connection on the pseudoriemannian manifold (7'Z,, ),
Non-zero coefficients of this connection in a local coordinate system (n~! (U), x) asso-
ciated with (U, x) take values

1

r;,=r;,.—.rg,-rf‘.:rg,=r;3=rg,=r;‘_-r:,=— x?

%, =T},=T%=

1 B
1 3 F'rizzrg|=rgz='& = :

ey T Ty

It implies that non-zero coefficients R/, of the curvature tensor R of the connection
 are of the form
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Ry, =Ry =R =Ry =Ry =Ry = Ripn=Ri = (ta)z'

1
) S 4 — P4 P34
Rm—Rzn Rm R‘ZIS_R?H_RBI_ 322“R4u‘_(xz)z”
22 2 y?
D4 3
R;n =y = T;z’j’:{‘ ’ Rl?2 211 (x2F ’

and non-zero coefficients R;; of Ricci {ensor take values R;=Ra=—2/(x2)%. We
note that:

The sectional curvature of the pseudoriemannian manifold (7£,, g°) is not constant.
The scalar curvature of (7£, g9 is equal to zero.

3. Now, we will deal with geodesics on (T£,, g°).

(a) At first, we will find parametric representations of geodesics on 71, Geode-
sics are solutions of the following system of differential equation

- 2 . .
xl—?{xl X2=0,

Xl (v x— e am=o,

Y e R R S (8 R ) =0,
j}a_ ey (xl xl_x2x2)+ (tl yl_xs ya) 0.

The solutions of this system are of the form

X! () =a+bth—- (t+1,),
X2 (8)=b(ch - (t+2)) 7",
(1) o (B)=m, thk (t+2)— mst(ch-k (E+E))"2 +my the - e (t+t)+my,

y2(t)—=m, (ch- k () Sk - (E+t) + (ch 5 (E+1,))72 (¢tmg+my)

or
x' (f) == const,
(2) x2? (l):e"”“v)"‘ s y! (t):t‘l _+_(-2 te?l(Hf..) & s ya (t)=e’-("“~)/* (C;p}-f‘ t)
or
(3) x' (t)=const, x? (f)=const, y' ({)=b;t+b,, y* (t)—b, t+ by,

Making use of the initial conditions x (0)=(a', @% a® a') and x (0)=(o', ¥%, o9, ),
v'--0, the geodesic x is given by (1), where a=k ((2')2+(2%)2)'? sgn v', f,=((v')?

+ (@) arcsh (—v¥/v') sgn v, a=a'+a® v, b=a? ((v')*+(v*)?2)(v')"%)'~3,
my=sgn ' [at ((¢)+ (@2 + (@) + @) (@' T 0
my = at (@9 + (@) — 00+ ;,"—‘ :

4 Cn. Cepauxa, kn. |
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m:m (v‘—%lf), m4=a’+a‘5—f-
For initial conditions x (0)=(a', a?, a3 a') and x (0)=(0, 22, v%, ), 20, the geodesic
x is given by (2), where A=k v?/a?, t,=(a?/v?) In a?, const=a’,

C=aY cg= T, ey O o= TUA
1 » R (g2 3 2 0 b4 (a2

a
If a geodesic x of T, pass through a point (a!, a? a° a') at isotropy direction
(0, 0, ©%, '), then it is given by (3) where
b,=a', by=a?, by;=7% b,=a’ b;=1', bg=a'.
Thus we proved
Theorem 3. Exactly one geodesic passes through a fixed point of the mani-

fold Tty at a given direction. This geodesic is represented by (1) or (2) or (3).
(b) We will investigate properties of geodesics on T£, As we know (2], if a curve
t— ¢ (¢)¢ TLy is a geodesic, then the function £ — g° (o (£), o (£)€ Tty is a constant
one. Now, we want to pass a geodesic through two given points x=(x', x2 y!, y?)
and x=(x!, x% ¥\, ¥?), x+x of Ti,
10, At first, we assume that x'=x! and x2=x2
Let ¢:f— (' (£), 02 (¢), 9°(¢), 0* (£)) be a required geodesic. It is known ([6], Th. 9.1,
p.58) that the projection of this geodesic onto £, is a geodesic which pass through
the points (x', x?) and (x', x?). Thus we have
ol (t)=x!, ¢ (£)=x? el

From the properties of geodesics we get 92 (0)=x? and ¢2? (t,)=x? for some #,=0. Now
we find the coefficients ¢, ¢, ¢; and ¢, in equations (2) such that ¢ (0)=y', ¢*(0)=y?
0% (£,)=y', ¢ (¢£,)=y? To this aim we must to solve the system of linear equations

Ci=y =y oo (2 H= Y, Xt b XT=y

The determinant of the system is equal to (—1£ x2(x*?%-+0 and we have exactly one
solution.

20, Now, let x5 xt. If @£ — (@' (£), 0 (£). ¢ (£). 9' (£))€TLy is a required geodesic,
then its projection onto £, £— (0! (£), ¢*(f)) is given by

0! (B)=x'+x* (—sh-2 + et th' 1),
92 (f)=x? chi;’; (ch—ti,;ﬁl)".

As we know it is possible to take £, and ¢, in this representation such that 0! (0)=x!,
02 (0)=x2, ¢! (£,)=x, 97 (¢,)=x2
Let us return to geodesic (1). We introduce notations

Y (t)=my a* (£)+my o () + mg o (£)+m,
Y2 (£)=m, B* (£)+my B2 (£)+my B° (1)
and o =a’ (0), af =a’ (), B =P (0), i =P/ (¢, for i=1,2, 3.

The relations ¢ (0)=x and ¢ (£,)=x imply that we have to find m;, i=1,..., 4 which
satisfy the following system of linear equations
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yr=my aj+my ad+my,
yr=my B+ my B,
yr=my aimy ai+my o+ m,
yA=my Bit my Bi+ms B
This system has exactly one solution since the determinant of this sysem is equal to

t+t, 1/ ty b+t
b (th 150 —th L) (ch 2 ch )10,

3, If we have x'=x' and x?=x2, then each geodesic

(p,,:t—.(xl, xz’}";ylt+y1, )’2;}"" H_y‘z),

where a is an arbitrary non-zero number, satisfies the conditions ¢,(0)=x and ¢, (a)=x.
Thus we proved

Theorem 4. If two points of TL, do not belong to the same fibre, then there
exists exactly one geodesic which passes through these points. For two points of
Tty which belong to the same fibre, there exist infinitely many geodesics passing
through these points.
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