Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae publicationes

Сердика

Българско математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

GEOMETRY OF THE TANGENT BUNDLE OVER 2-DIMENSIONAL HYPERBOLIC SPACE

HALINA FELIŃSKA

The 2-dimensional Poincaré model of the hyperbolic space is well-known. Our considerations are based on this model. It is a 2-dimensional riemannian manifold L_2 with a support

$$L_2 = \{(x^1, x^2) \in \mathbb{R}^2 : x^2 > 0\}.$$

The riemannian metric g in \mathcal{L}_2 is given by

$$[g_{ij}(x^1, x^2)] = \begin{bmatrix} (\frac{k}{x^2})^2 & 0\\ 0 & (\frac{k}{x^2})^2 \end{bmatrix},$$

where k is arbitrary positive constant ([1, 3, 4]). The significance of the Lobachevski geometry in mathematics and physics is obvious for everybody. Thus it seems to be interesting to investigate the geometry of the tangent bundle over \mathcal{L}_2 with the pseudoriemannian metric g^c (a complete lift of g). The paper is devoted to this problem. Let $(T\mathcal{L}_2, g^c)$ be the tangent bundle over \mathcal{L}_2 with the metric g^c , where g^c is a complete lift to $T\mathcal{L}_2$ of g, [5].

The matrix g^c in the local coordinate system $(\pi^{-1}(U), \bar{x}=(x^1, x^2, y^1, y^2))$ on $T\ell_2$ associated with a local coordinate system $(U, x=(x^1, x^2))$ on ℓ_2 is of the form

$$[g_{AB}^{c}(x^{1}, x^{2}, y^{1}, y^{2})] = \begin{bmatrix} -\frac{2k^{2}y^{2}}{(x^{2})^{3}} & 0 & \frac{k^{2}}{(x^{2})^{2}} & 0 \\ 0 & -\frac{2k^{2}y^{2}}{(x^{2})^{3}} & 0 & \frac{k^{2}}{(x^{2})^{2}} \\ \frac{k^{2}}{(x^{2})^{2}} & 0 & 0 & 0 \\ 0 & \frac{k^{2}}{(x^{2})^{2}} & 0 & 0 \end{bmatrix}.$$

The index of g^c is equal to 2.

1. We will find and investigate the isometry group of (TL_2, g^c) . This group is determined by 1-parameter transformation groups of TL_2 generated by the Killing vector fields of this manifold. In order to determine a basis of a Lie algebra of Killing vector fields on TL2 we have to find a basis of a Lie algebra of Killing vector fields on \mathcal{L}_2 . It leads us to the solution of the following system of partial differential equations:

SERDICA Bulgaricae mathematicae publicationes, Vol. 14, 1988, p. 46-51.

$$\begin{aligned} &\partial_1 K^1(x^1, x^2) - \frac{1}{x^2} K^2(x^1, x^2) = 0, \\ &\partial_2 K^1(x^1, x^2) + \partial_1 K^2(x^1, x^2) = 0, \\ &\partial_2 K^2(x^1, x^2) - \frac{1}{x^2} K^2(x^1, x^2) = 0, \end{aligned}$$

where $K(x^1, x^2) = (K^1(x^1, x^2), K^2(x^1, x^2))$ in the local coordinate system (U, x). It turns out after some calculations that the following vector fields form the basis of a Lie ligebra of Killing vector fields on L_2 :

$$K(x^{1}, x^{2}) = \left[\frac{1}{2}((x^{1})^{2} - (x^{2})^{2}), x^{1} x^{2}\right],$$

$$K(x^{1}, x^{2}) = [x^{1}, x^{2}],$$

$$K(x^{1}, x^{2}) = [1,0].$$

The vector fields K, K, K are complete ones on \mathcal{L}_2 . The vector fields K^v , K^v , K^v , K^v vertical lifts of K, K, K) and K^c , K^c , K^c (complete lifts of K, K, K) form the basis of a Lie algebra of complete Killing vector fields on $T\mathcal{L}_2$ (see [5]). These fields in the local coordinate system $(\pi^{-1}(U), \overline{x})$ have the form

$$\begin{split} &K^{v}_{1}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [0,\,0,\,\frac{1}{2}\,\left((x^{1})^{2} - (x^{2})^{2}\right),\,\,x^{1}\,\,x^{2}],\\ &K^{v}_{2}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [0,\,\,0,\,\,x^{1},\,\,x^{2}],\\ &K^{v}_{3}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [0,\,\,0,\,\,1.0],\\ &K^{c}_{3}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [\frac{1}{2}\,\left((x^{1})^{2} - (x^{2})^{2}\right),\,x^{1}\,x^{2},\,x^{1}\,y^{1} - x^{2}\,y^{2},x^{2}\,y^{1} + x^{1}\,y^{2}],\\ &K^{c}_{1}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [x^{1},\,x^{2},\,y^{1},\,y^{2}],\\ &K^{c}_{3}\left(x^{1},\,x^{2},\,y^{1},\,y^{2}\right) = [1,\,\,0,\,\,0,\,\,0]. \end{split}$$

Now, we are able to determine 1-parameter transformation groups ϕ^{σ} , ϕ^{c} (i=1,2,3) of TL_{2} generated by K^{σ} , K^{c} , respectively. We have

$$\begin{array}{l} \overset{1}{\varphi^{\sigma}}\left(t,\,(x^{1},\,x^{2},\,y^{1},\,y^{2})\right) = (x^{1},\,x^{2},\,\frac{1}{2}\,\left((x^{1})^{2} - (x^{2})^{2}\right)\,t + y^{1},\,\,x^{1}\,\,x^{2}\,\,t + y^{2}), \\ \overset{2}{\varphi^{\sigma}}\left(t,\,(x^{1},\,x^{2},\,y^{1},\,y^{2})\right) = (x^{1},\,x^{2},\,\,tx^{1} + y^{1},\,\,tx^{2} + y^{2}), \\ \overset{3}{\varphi^{\sigma}}\left(t,\,(x^{1},\,x^{2},\,y^{1},\,y^{2})\right) = (x^{1},\,x^{2},\,y^{1} + t,\,\,y^{2}), \\ \overset{1}{\varphi^{c}}\left(t,\,(x^{1},\,x^{2},\,y^{1},\,y^{2})\right) = (\frac{-2t\,(x^{1})^{2} + (x^{2})^{2} + 4x^{1}}{t^{2}\,((x^{1})^{2} + (x^{2})^{2}) - 4tx^{1} + 4},\,\,\frac{4x^{2}}{t^{2}\,((x^{1})^{2} + (x^{2})^{2}) - 4tx^{1} + 4}, \\ \frac{4\,y^{1}\,\left[(tx^{1} - 2)^{2} - (tx^{2})^{2}\right] + 8tx^{2}\,y^{2}\,(tx^{1} - 2)}{\left[t^{2}\,((x^{1})^{2} + (x^{2})^{2}) - 4tx^{1} + 4\right]^{2}}\,,\,\,\frac{8tx^{2}\,y^{1}\,(2 - tx^{1}) + 4\,y^{2}\left[(tx^{1} - 2)^{2} - (tx^{2})^{2}\right]}{\left[t^{2}\,((x^{1})^{2} + (x^{2})^{2}) - 4tx^{1} + 4\right]^{2}}\,, \\ \overset{2}{\varphi^{c}}\left(t,\,(x^{1},\,x^{2},\,y^{1},\,y^{2})\right) = (e^{t}\,x^{1},\,e^{t}\,x^{2},\,e^{t}\,y^{1},\,e^{t}\,y^{2}), \end{array}$$

H. Felińska 48

$$\phi^{c}(t, (x^{1}, x^{2}, y^{1}, y^{2})) = (x^{1} + t, x^{2}, y^{1}, y^{2}),$$

for $(t, (x^1, x^2, y^1, y^2)) \in R \times TL_2$.

We denote by H the isometry group of TL_2 generated by transformations defined by the above formulas. H is the maximal isometry groups which preserves fibres. The special attention has to be devoted with subgroups H_v and H_c generated by 1-parameter transformation group ϕ^v , ϕ^v , ϕ^v and ϕ^c , ϕ^c , respectively.

The subgroup H_v of H is normal one. It follows from the fact that the Lie algebra of H_v is an ideal of Lie algebra of complecte Killing vector fields on TL_2 .

Theorem 1. The group H_v acts transitively on fibres of the tangent bundle

over L_2 .

Proof. Let us fix arbitrary points (x^1, x^2, z^1, z^2) and (x^1, x^2, y^1, y^2) of the fibre

 π^{-1} ((x¹, x²)). The isometry $\phi_{t_1}^{0} \circ \phi_{t_2}^{0}$ where $t_1 = y^1 - z^1 + \frac{z^2 - y^2}{r^2} x^1$ and $t_2 = \frac{y^2 - z^2}{r^2}$, maps (x^1, x^2, z^1, z^2) on (x^1, x^2, y^1, y^2) .

Let $GL(2, R)^+$ be a subgroup of the linear group GL(2, R) consisting of all matrices with positive determinant. The action φ of $GL(2,R)^+$ on L_2 is given by the formula

$$\varphi\left(\left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right], z\right) = \frac{\alpha z + \beta}{\gamma z + \delta},$$

where the identification $L_2(x^1, x^2) \sim z = x^1 + lx^2$ is used for convenience. Then the action ψ of H_c on TL_2 is of the form:

$$\psi \colon GL(2, R)^{+} \times TL_{2} \longrightarrow TL_{2},$$

$$\psi \colon (\varrho, (x^{1}, x^{2}, v^{1}, v^{2})) \longrightarrow (\varphi(\varrho, (x^{1}, x^{2})), v^{i} \partial_{i} \varphi(\varrho, (x^{1}, x^{2}))).$$

This action is not transitive on TL_2 . Moreover, we have

Theorem 2. (TL_2, H) is a homogeneous pseudoriemannian manifold.

Proof. It is sufficient to show that the group H acts transitively on TL_2 . Let us fix arbitrary points (x^1, x^2, y^1, y^2) , $(\overline{x^1}, \overline{x^2}, \overline{y^1}, \overline{y^2})$ of TL_2 . The isometry $\phi_{t_s}^v \circ \phi_{t_s}^v \circ \phi_{t_$

where
$$t_1 = \frac{\overline{y^2} - y^2}{x^2}$$
, $t_2 = \overline{y^1} - y^1 - \frac{\overline{y^2} - y^2}{x^2} x^1$, $t_3 = \ln \frac{\overline{x^2}}{x^2}$, $t_4 = \overline{x^1} - \frac{\overline{x^2}}{x^2} x^1$, $t_5 = \frac{x^2 \overline{y^2} - \overline{x^2} \overline{y^2}}{\overline{x^2} x^2}$,

$$t_6 = \overline{y^1} - \overline{y^1} \frac{\overline{x^2}}{x^2} - \overline{x^1} \frac{x^2 \overline{y^2} - \overline{x^2} \overline{y^2}}{x^2 \overline{x^2}} \text{ maps } (x^1, x^2, y^1, y^2) \text{ on } (\overline{x}^1, \overline{x}^2, \overline{y}^1, \overline{y}^2).$$

2. Let ∇ be a Levi-Civita connection on the pseudoriemannian manifold $(T \mathcal{L}_2, g^c)$. Non-zero coefficients of this connection in a local coordinate system $(\pi^{-1}(U), x)$ associated with (U, x) take values

$$\Gamma^{1}_{12} = \Gamma^{1}_{21} = \Gamma^{2}_{22} = \Gamma^{3}_{14} = \Gamma^{3}_{41} = \Gamma^{3}_{23} = \Gamma^{3}_{32} = \Gamma^{4}_{24} = \Gamma^{4}_{42} = -\frac{1}{x^{2}}$$

$$\Gamma^2_{11}\!=\!\Gamma^4_{13}\!=\!\Gamma^4_{31}\!=\!\frac{1}{x^2}\;\text{,}\;\;\Gamma^3_{12}\!=\!\Gamma^3_{21}\!=\!\Gamma^4_{22}\!=\!\frac{y^2}{(x^2)^2}\;\text{,}\;\;\Gamma^4_{11}\!=\!-\frac{y^2}{(x^2)^2}\;$$

It implies that non-zero coefficients R_{ikl}^i of the curvature tensor R of the connection are of the form

$$\begin{split} R^1_{212} = & R^3_{121} = R^3_{214} = R^4_{123} = R^3_{232} = R^4_{141} = R^3_{422} = R^4_{321} = \frac{1}{(x^2)^2} \;, \\ R^1_{122} = & R^2_{211} = R^3_{124} = R^4_{213} = R^3_{142} = R^4_{231} = R^3_{322} = R^4_{411} = -\frac{1}{(x^2)^2} \;, \\ R^3_{212} = & R^4_{121} = -\frac{2\,y^2}{(x^2)^3} \;, \qquad R^3_{122} = R^4_{211} = \frac{2\,y^2}{(x^2)^3} \;, \end{split}$$

and non-zero coefficients R_{ij} of Ricci tensor take values $R_{11} = R_{22} = -2/(x^2)^2$. We note that:

The sectional curvature of the pseudoriemannian manifold (TL_2, g^c) is not constant. The scalar curvature of (TL, g^c) is equal to zero.

3. Now, we will deal with geodesics on (TL_2, g^c) .

(a) At first, we will find parametric representations of geodesics on TL_2 . Geodesics are solutions of the following system of differential equation

$$\ddot{x}^{1} - \frac{2}{x^{2}} \dot{x}^{1} \dot{x}^{2} = 0,$$

$$\ddot{x}^{2} + \frac{1}{x^{2}} (\dot{x}^{1} \dot{x}^{1} - \dot{x}^{2} \dot{x}^{2}) = 0,$$

$$\ddot{y}^{1} + \frac{2y^{2}}{x^{2} x^{2}} \dot{x}^{1} \dot{x}^{2} - \frac{2}{x^{2}} (\dot{x}^{1} \dot{y}^{2} + \dot{x}^{2} \dot{y}^{1}) = 0,$$

$$\ddot{y}^{2} - \frac{y^{2}}{x^{2} x^{2}} (\dot{x}^{1} \dot{x}^{1} - \dot{x}^{2} \dot{x}^{2}) + \frac{2}{x^{2}} (\dot{x}^{1} \dot{y}^{1} - \dot{x}^{2} \dot{y}^{2}) = 0.$$

The solutions of this system are of the form

$$x^{1}(t) = a + bth\frac{\alpha}{k}(t+t_{0}),$$

$$x^{2}(t) = b(ch(\frac{\alpha}{k}(t+t_{0}))^{-1},$$

(1)
$$y_1(t) = m_1 t h \frac{\alpha}{k} (t+t_0) - m_2 t (c h \frac{\alpha}{k} (t+t_0))^{-2} + m_3 t h^2 \frac{\alpha}{k} (t+t_0) + m_4,$$
$$y^2(t) = m_1 (c h \frac{\alpha}{k} (t+t_0))^{-1} + s h \frac{\alpha}{k} (t+t_0) + (c h \frac{\alpha}{k} (t+t_0))^{-2} (t m_2 + m_3)$$

or

$$x^1(t) = \text{const.}$$

(2)
$$x^{2}(t) = e^{\lambda(t+t_{0})/k}, \ y^{1}(t) = c_{1} + c_{2} t e^{2\lambda(t+t_{0})/k}, \ y^{2}(t) = e^{\lambda(t+t_{0})/k} \ (c_{3} + c_{4} t)$$

or

(3)
$$x^{1}(t) = \text{const}, \ x^{2}(t) = \text{const}, \ y^{1}(t) = b_{3}t + b_{4}, \ y^{2}(t) = b_{5}t + b_{6}.$$

Making use of the initial conditions $x(0) = (a^1, a^2, a^3, a^4)$ and $x(0) = (v^1, v^2, v^3, v^4)$, $v^1 \neq 0$, the geodesic x is given by (1), where $a = k ((v^1)^2 + (v^2)^2)^{1/2} \operatorname{sgn} v^1$, $t_0 = ((v^1)^2 + (v^2)^2)^{1/2}$ $+(v^2)^2)^{1/2}$ arc $sh(-v^2/v^1)$ sgn v^1 , $a=a^1+a^2$ v^2/v^1 , $b=a^2$ $(((v^1)^2+(v^2)^2)(v^1)^{-2})^{1/2}$,

$$m_1 = \operatorname{sgn} v^1 \left[a^4 \left((v^1)^2 + (v^2)^2 \right)^{1/2} + ((v^1)^2 + (v^2)^2)^{-1/2} \frac{v^2}{v^1} \left(v^4 - \frac{v^2 v^3}{v^1} \right) \right],$$

$$m_2 = a^4 ((v^1)^2 + (v^2)^2) - v^3 + \frac{v^2 v^4}{v^4}$$

$$m_3 = \frac{sgn\ v^1}{(v^1)^2} \left(v^4 - \frac{v^2\ v^3}{v^1}\right), \ m_4 = a^3 + a^4 \frac{v^2}{v^1}$$

For initial conditions $x(0) = (a^1, a^2, a^3, a^4)$ and $\dot{x}(0) = (0, v^2, v^3, v^4)$, $v^2 \neq 0$, the geodesic x is given by (2), where $\lambda = k v^2/a^2$, $t_0 = (a^2/v^2) \ln a^2$, const $= a^1$,

$$c_1 = a^3$$
, $c_2 = \frac{v^3}{(a^2)^2}$, $c_3 = \frac{a^4}{a^2}$, $c_4 = \frac{a^2 v^4 - a^4 v^2}{(a^2)^2}$

If a geodesic x of TL_2 pass through a point (a^1, a^2, a^3, a^4) at isotropy direction $(0, 0, v^3, v^4)$, then it is given by (3) where

$$b_1 = a^1$$
, $b_2 = a^2$, $b_3 = v^3$, $b_4 = a^3$, $b_5 = v^4$, $b_6 = a^4$.

Thus we proved

Theorem 3. Exactly one geodesic passes through a fixed point of the manifold TL2 at a given direction. This geodesic is represented by (1) or (2) or (3). (b) We will investigate properties of geodesics on TL_2 . As we know [2], if a curve $t \to \varphi(t) \in TL_2$ is a geodesic, then the function $t \to g^c$ $(\varphi(t), \varphi(t)) \in TL_2$ is a constant one. Now, we want to pass a geodesic through two given points $x = (x^1, x^2, y^1, y^2)$ and $\overline{x} = (\overline{x}^1, \overline{x}^2, \overline{y}^1, \overline{y}^2), x \neq \overline{x}$ of TL_2 .

1°. At first, we assume that $x^1 = x^1$ and $x^2 \neq x^2$. Let $\varphi: t \to (\varphi^1(t), \varphi^2(t), \varphi^3(t), \varphi^4(t))$ be a required geodesic. It is known ([6], Th. 9.1, p.58) that the projection of this geodesic onto L_2 is a geodesic which pass through the points (x^1, x^2) and $(x^1, \overline{x^2})$. Thus we have

$$\varphi^{1}(t) = x^{1}, \ \varphi^{2}(t) = x^{2} e^{t/k}.$$

From the properties of geodesics we get $\varphi^2(0) = x^2$ and $\varphi^2(t_1) = \overline{x^2}$ for some $t_1 \neq 0$. Now we find the coefficients c_1 , c_2 , c_3 and c_4 in equations (2) such that $\varphi^3(0) = y^1$, $\varphi^4(0) = y^2$ $\varphi^3(t_1) = \overline{y^1}$, $\varphi^4(t_1) = \overline{y^2}$. To this aim we must to solve the system of linear equations

$$c_1 = y^1$$
, $c_3 x^2 = y^2$, $c_1 + c_2 (\overline{x^2})^2$ $t_1 = \overline{y^1}$, $c_3 \overline{x^2} + c_4 t_1 \overline{x^2} = \overline{y^2}$

The determinant of the system is equal to $(-t_1^2 x^2 (\bar{x}^2)^3) \neq 0$ and we have exactly one solution.

2°. Now, let $x^1 \neq \overline{x^1}$. If $\varphi: t \to (\varphi^1(t), \varphi^2(t), \varphi^3(t), \varphi^4(t)) \in TL_2$ is a required geodesic, then its projection onto L_2 $t \to (\varphi^1(t), \varphi^2(t))$ is given by

$$\varphi^{1}(t) = x^{1} + x^{2}(-sh\frac{t_{0}}{b} + ch\frac{t_{0}}{b}th\frac{t+t_{0}}{b}),$$

$$\varphi^{2}(t) = x^{2} ch \frac{t_{0}}{k} (ch \frac{t+t_{0}}{k})^{-1}.$$

As we know it is possible to take t_0 and t_1 in this representation such that $\varphi^1(0) = x^1$, $\varphi^2(0) = x^2, \ \varphi^1(t_1) = \overline{x^1}, \ \varphi^2(t_1) = \overline{x^2}.$

Let us return to geodesic (1). We introduce notations

$$y^{1}(t) = m_{1} \alpha^{1}(t) + m_{2} \alpha^{2}(t) + m_{3} \alpha^{3}(t) + m_{4}$$

$$y^{2}(t) = m_{1} \beta^{1}(t) + m_{2} \beta^{2}(t) + m_{3} \beta^{3}(t)$$

and $\alpha_0^i = \alpha^i$ (0), $\alpha_1^i = \alpha^i$ (t_1), $\beta_0^i = \beta^i$ (0), $\beta_1^i = \beta^i$ (t_1) for i = 1, 2, 3.

The relations $\varphi(0) = x$ and $\varphi(t_1) = \overline{x}$ imply that we have to find $m_i, i = 1, \ldots, 4$ which satisfy the following system of linear equations

$$y^{1} = m_{1} \alpha_{0}^{1} + m_{3} \alpha_{0}^{3} + m_{4},$$

$$y^{2} = m_{1} \beta_{0}^{1} + m_{3} \beta_{0}^{3},$$

$$\bar{y}^{1} = m_{1} \alpha_{1}^{1} + m_{2} \alpha_{1}^{2} + m_{3} \alpha_{1}^{3} + m_{4},$$

$$\bar{y}^{2} = m_{1} \beta_{1}^{1} + m_{2} \beta_{1}^{2} + m_{3} \beta_{1}^{3}.$$

This system has exactly one solution since the determinant of this sysem is equal to $t_1 \left(th \frac{t_1+t_0}{k}-th \frac{t_0}{k}\right) \left(ch \frac{t_0}{k} ch \frac{t_1+t_0}{k}\right)^{-1} \neq 0.$

3°. If we have $x^1 = \overline{x}^1$ and $x^2 = \overline{x}^2$, then each geodesic

$$\varphi_a: t \to (x^1, x^2, \frac{\overline{y^1} - y^1}{a}t + y^1, \frac{\overline{y^2} - y^2}{a}t + y^2),$$

where a is an arbitrary non-zero number, satisfies the conditions $\varphi_a(0) = x$ and $\varphi_a(a) = x$. Thus we proved

Theorem 4. If two points of TL_2 do not belong to the same fibre, then there exists exactly one geodesic which passes through these points. For two points of TL_2 which belong to the same fibre, there exist infinitely many geodesics passing through these points.

REFERENCES

- 1. Б. В. Кутузов. Геометрия Лобачевского и элементы оснований геометрии. М., 1950.
- 2. А. З Петров. Пространства Эйнштейна. М., 1961.
- 3. И. Тамура. Топология слоений. М., 1979.
- 4. J. A. Thorpe. Elementary topics in differential geometry. Berlin, 1979.
- 5. K. Yano, S. Ishihara. Tangent and cotangent bundles. N. Y., 1973.

Instytut Matematyki UMCS PL. M. C. Skłodowskiej I 20-031 Lublin Poland Received 17.4. 1986