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A COMPARISON THEOREM FOR TCHEBYCHEFF POLYNOMIALS
GENO NIKOLOV, RUMEN ULUCHEV

In this paper we study Tchebycheff polynomials satisfying some zero boundary conditions and we
show that the /,-norm of such polynomials decreases when using generalized derivatives of lower
order in the boundary conditions.

Let [a, b] be a finite subinterval of the real line and Uy={u;}¥ be a set of func-
tions in C¥|a, b).

Definition 1. Uy is called Extended Complete Tchebycheff system (ECT-sys-
tem) on [a, b] if any u¢U,: =span {u,,..., u,} has at most k—1 zeros in [a,b]
counting the multiplicities (k=1, ..., N).

Definition 2. Let Uy be an ECT-systen on [a,b]. Then the functions from
Uy are called Extended Tchebycheff polynomials of order N.

Throughout this paper by polynomials we mean Extended Tchebychelf poly-
nomials.

It is well known (see [2, 5]) that for an ECT-system U, there exist positive on
[a, b] functions w;¢ C¥~'[a, b], i=1,..., N, such that

DyDy—y ... Dyu(x)=0 for all u¢@y, x¢[a, b),
where

Dl_dl

T dx w)

i=1,..., N.

Moreover, if set D°u:=u, u¢¥y and D*::D,D,_,...D,, k=1,..., N we have
Dru;(x)=38,, -, w;(x), i=1, ..., k+1, k=0,..., N—1, 3, being the Kronecker
symbol.

Given the integers (h,..., A3 Hiveeny Hp)=:(Sf13 f0)=:f with 0<A, <...
Ly SN=2, 051y <. o <P, SN—=2, my+my=N—1 we denote by A(f) the set of
polynomials of the form:

U=uy+aly+ - +ay 4, a€R, i=1,..., N=1,
satisfying the boundary conditions
D/u(a)=0, jeJ;,
D/u(b)=0, jely.
Introduce the incidence matrix

€0 € -+ € N9

1 0 0
B(I)ol o v viig ik onidiv
1 0 0
€at1,0 Cnttdre oy CppiN-2
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with n=N—1—m,—m, and
ep;=1 if jeJ,, e.;,—0 otherwise,
e,eyy=1 it JEJy, €,:1,,=0 otherwise.

We write < # if )’:,ni)\,-, i=1,...m, and ;T,,\p,, i=1,..., my with at least one

strong inequality.
Theorem. Let p be fixed, | =p<-o. Suppose that E(F) satisfies the Polya

condition and ¥ <J4. Then
¢)) la(F s ) ,<ia(X;-),,

u(f;-) being the polynomial of least L,|a, b]-norm in A(¥).
Proof. Let £ be a fixed integer satisfying

et 1 <Dy if k<my, Idp+1=N—2 if k=m,.

The theorem will follow by pair-wise comparisons if we prove it in the case
I=Mseves Aps Hineess Hp,), where

PR ES
Ao, i=k
We show (1) in simpler case. First we note that «(f#;-) has n simple

zeros in (a, b). Indeed for arbitrary fixed {¢}7, a<t,<---<t,<b there exist polyno
mials ¢ €A () and ¢, €%, ,, i=1,..., n satisfying the interpolation conditions

o(t)=0 , j=1,...,n

Dioa)=0, jeJ,, i=1,....n,

Dig(b)=0 , jedyp i=1,....n,

(P,(t/) =8i./v 1,j:l,..., n.

A= . W=, i=1 .., my.

Then A(J)={o— }EI ;s €R, i=1,..., n} and hence
=1
b
(a7 %)~ odx) sign u(F; x) dx=0,i=1,..., n.

Now it follows in a standart way that w(#;-) must have n sign changes
in (a, b).
Let {x:} be the zeros of u:=u(#;-) in (a, b). The Atkinson - Sharma theorem

for ECT-systems (see [3]) yields that there exists unique polynomial E(A(f) such

that w(x)=0, i=1,..., n. As usually Z(f; (a, b)) is the number of zeros of the
function f in (a, b) counting the multiplicities. By Budan — Fourier theorem (see [5])

Z(u; (a, b)=S (D(a),..., DV?u(a), 1)=St(D°u(b),..., DV2u(b), 1)
“N—=1—my—my=n.
Since Z(u; (a, b))=n, we have S~ (D°u(a),..., D¥?u(a), 1)=N—1—m,.
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Therefore the values D’ u(a), j€¢{0,..., N—2}\_#, are distinct from zero and must
change sign alternatively. Similarly
S-(D°u(a),..., D¥2u(a), 1)=N—1—m,.
Then it is not difficult to see that

(2) sign u (x)=sign u(x), x¢€(a, b).
Now observe that S—(D°ud(a), ..., D¥?uy(a), N)=N—1—m,

for each #o=u—au, 0=<a<1 and by Budan — Fourier theorem Z(u,; (a, b))<n.
But u4(x:))=0, i=1,..., n. That is why S—(D%u4(a),.-., DV ?u4(a), 1)=N—1—m,

and sign u(x)=sign E(x):sign uq(x) for xe€(a,b)and ag(0, 1].

Therefore |4 (x)|=|u(x)|. x€[a, b].

Assuming u(t,) = u (t,) for some ¢, € (@, b)\{x,..., x,}, we get u(x)==u(x)
on (a, b), since the Birkhoff interprolation problem

D/v(a)=0, jeJi\ {2}
Div(b)=0, jels,

v (x1)=0, i=1,...,n
v (4)=0,

has a unique solutionin %,_, (by Atkinson—Sharma theorem), namely v (x)==0 — contra-
diction.

This yields |E(x)‘<|u(x)|. xe(a, b)N{xy,..., x,} and consequently IIEII,
<llulp-

The proof is complete.

The case of usual polynomials was studied by G. Nikolov [4]. The idea of using
the Budan -- Fourier theorem is due to B. Bojanov (see [1]).
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