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A NOTE ON MULTIVALENT FUNCTIONS
DONKA PASHKULEVA, SHIGEYOSHI OWA

The subclass K(p, @) consisting of functions which are multivalent in the unit disk U is intro-

duced. The object of lhe present paper is to derive some interesting results for functions belonging to
the class K (p a).

1. Introduction. Let A, denote the class of functions of the form
(1.1) flz)=2"+ _Z a2z (peN={l, 2,3,...})
which are analytic in the unit disk U={z: |z|<1}. For a function f(z) belonging to

A, Nunokawa [2] has proved the following result.
Theorem A. If the function f(z) belonging to A, satisfies

(1.2) p+Re{ ffm Ehs0 (¢ ),

then f(z) is p-valent in the unit disk U and

(1.3) k+Re(Lor ,m 50 (2¢0)

or k=0,1,2,...,p—1.
In view of (1.2) and (1.3), we note that
zj(’“),(z)

1. 1
(1.4) Re{l+ )

(P)(z).
>1—-p »Re{—zL——@—z 1>1-p.

Let K,(p, a) be the subclass of A, consisting of functions which satisfy the con-
dition

p+1)
(15) Re(1+ Lo >1-a

for some a(0<<a<p), and for all z¢U. Note that (1.4) shows Ky(p.p)=K,(p—1, p—1),
and that K,(p, 0)=K,(p, p).

Let f( z) and g(z) be analytic functions in the unit disk U. Then f(z) is said to
be subordinate to g(2) if there exists an analytic function w(z) in U satisfying @(0)=0
and |w(2)|<l (2€U) such that fz)=gw(2)). We denote by f(z)<g(2) this relation.
If g(2) is univalent in U, then the subordination f(z)<g(z) is equivalent to f(0)=g(0)
and f(U)=g(U).

2. Some properties of the class K,(p, ). In order to show our main result, we
have to recall here the following result due to Miller and Mocanu [1].
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Lemma 1. Let o(u, v) be complex wvalued function ¢: D—C, D=CXC (C is
the complex plane), and let u=u,+iu, v=v,+ivy. Suppose that the function ¢(u, v)

satisfies the following conditions :
(i) o(u, v) is continuous in D;
(i) (1, 0)¢D and Re{o(1, 0)}>0;

(iii) Re {@(ity, v,)}<0 for all (iuy, v,)€D and such that v,<—(1+ul)2.
Let p(2)=1+p,z+py2®+ ... be regular in the unit disk U such that (p(2), zp'(2))

¢D for all z¢U. If

Re{o(p(2), zp'(2))}>0, (z¢U),

then Re{p(z)}>0 (z¢U).
Applying Lemma 1, we derive

Theorem 1. If the function f(2) isin class K,(p, a), then f(z)¢K,(p—1, p—1),

where 0<a <(1+2\2)2 and

3 - &
(2.1) B= + 2a :ﬂ’ 4a+49 .

Proof. We need to show that

Re{l+ L2260~ | _amRe(l +-Z2G) 159 g,

1%z) 170 (3)
hat is, that f(z)¢K,(p, @) satisfies
22) Re (L5 4>1-p
Define the function F(2) by
p—1) oo

@4) F=Lr @zt 4
Then, it is sufficient to prove that

Re{a-+ >0 =Re (&) >1—
Let -
(25) o =(1—B)+Be(@),

then g(g) is regular in the unit disk U, and ¢(2)=1+¢,2+¢,2*+
rithmic differentiations of both sides in (2.5), we have

zf*(z) __Bxq'x)
(2.6) a+ =a—PB+Pg(z)+ (1 =)+ Bg2)
or

-
27) Re{u+ 5} =Re{a—B+Bgle) + (=g prn}>0
Setting

(28) ola, v)=u-B+ﬁa+U:g°W.

. Taking the loga-
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we can see that:
(i) o(z, v) is continuous in D=(C—{(B—1)/B}xC;
(i) (1, 0)¢D and Re{o(1, 0)}=a>0; :
(iit) (for all (iuy, v,)€ D such that v,<—(1+u43)/2,

. B(1—B)vy
R , D)} =a—Pp P
e {oliny v} =a—B+o
g BO=B(1+a) B —B)—2Ba—Plui
- AO-pripad AP By}

because 0<a§(l+‘2J§)/, B is given by (2.1), and 0<<B<I. Therefore, by using
Lemma 1, we obtain Re {¢(z)}>>0 which implies that

zF'(2)
Re{ ey
This completes the proof of Theorem 1.

Corollary L. If the function f(z)is in the class Ky(p, o), then f(2)€ K,(p—1, a)
where 0<<a<(1+2y 2)/2. _

Corollary 2. If the function f(2) is in the class K,(p, @) with 0<a=(1+\ 2)2,

then f(z) is p-valent convex of order (1—a) for 0<a=1, and Re{zf'(z)/f(2)}>—a.
Proof. Using Corollary 1, we have

1>1—8.

)
Re{1+zf(p+l)(’—)}>1—a»Re{l+ A >1—a

fPz) 7 (2)
zf"(2) 2f(z)
:>Re{l+f7(z—)}>l——a»Re{ oy >

Next, we need the following lemma by Obradovi¢ and Owa [3].
Lemma 2. If the function f(z) defined by f(z)=z+ Zz a2" in the unit disk U
n==
satisfies

zf'(2)
(2.9) Re { 0 }>a
for some a(0<a<<l), and for all z¢U, then
f(z),B 1
(2.10) Re{((Tz)} > TroRi—a)

where 0<B=<1/2(1 —a).
Now, we prove
Theorem 2. [f the function f(z) is in the class K,(p, @) with 0<a<]1, then

1-(1-2y)| z | PP 1+ —-2y)z|
(2.11) S | I's =ra

for z¢ U, where 0<p=<1/2a and y=1/(1+2ap).
Proof. Note that Lemma 2 implies that

Re {1+ 1>a=Re (/P> T5ami=a)
because
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4 I( ’
Re{1+ % >ueRel L 1>

By virtue of Theorem I, we see that
FAEK(p, @)= Re{l+ ) >1—a
for F(2) given by (2.4). It follows from the above that

f2) €K p, 0)=Re{(F(2)P}>y= l:_m :

Thus, with the help of the subordination, we have

212 (Plp< 22,
so that

‘ 14+(1-2y) |z | _2(1-
(2.13) |(P(Z))B_““(|i|2;’)|alil“|é%}%-

This gives the assertion of Theorem 2.
Taking a=1 and B=1/2, Theorem 2 gives
Corollary 3. If the function f(2) is in the class K p, 1), then
1 f(’)(z) 12 1
S

e i

for z¢U.

s|

1-|z|
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