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STABILIZERS OF o-FIELDS OF SETS IN SEPARABLE
METRIC SPACES AND COMPLETE GROUPS

V. V. MISKIN

Let X be an uncountable separable metric space and let & be a strongly homogeneous o-field of

sets in X of uncountable co-finality containing the o-field of Borel sets in X. Then the stabilizer of
&, consisting of those autobijections of X leaving & globally invariant, or in other words, the Borel

automorphism group of the Borel space (X, & ) is a complete subgroup of the general symmetric group

Sy coinciding with its normalizer in Sy. In particular, so does the stabilizers of the classical c-fields of
Borel and Lebesgue-measurable sets, and of the sets with the Baire property in Euclidean spaces.
furthermore, in uncountable Polish spaces.

1. Introduction. We recall that a group G is complete if the center of G is trivial
and every automorphism of G is inner [9,p.56]. The classical examples of complete
groups are, by Holder’s theorem (3], the finite symmetric groups S,, for all n2
and 6. Furthermore, by the Schreier-Ulam theorem [11] the symmetric group Sy
of an infinite set X is complete as well. Let us denote by Ay the general alternating
group of an infinite set X consisting of compositions of an even (finite) number of
transpositions of X. Then the following generalization of the Schreier-Ulam theorem
holds [12]. Every automorphism of a group G such that AycG<Sy is induced by an
inner automorphism of Sy. We recall that a Polish space is a separable completely
metrizable topological space and an absolute Borel topological space is a space
homeomorphic to a Borel set in a Polish space. It was shown by P. S. Alexandroff
[1] and F. Hausdorff [4] that every uncoutable Borel set in a Polish space contains
a copy of the Cantor set D® and so is of the cardinal of the continuum. On the other
hand, it was established by K. Kuratowski [6] that for any two uncountable Borel
sets By, By in a Polish space the Borel spaces (B,, #p) and (By, #p) are isomorphic
and so are isomorphic to the Borel space (D<, !?D(,,), where #, denotes the o-field of

Borel sets in a topological space X. On can apply the above-mentioned generalization
of the Schreier-Ulam theorem and the results of Alexandroff-Hausdorff and Kuratow-
ski to obtain the following assertion, discovered in fact by E. R. Lorch and Hing
Tong (7). The stabilizer of the o-field of Borel sets in an absolute Borel topological
space X of cardinality ¢ is a complete subgroup of Sy.In the present paper, stimulal-
ed by [7), a more general result is established concerning the stabilizers of strongly
homogeneous extensions of the o-fields of Borel sets in uncountable separable metric
spaces. Some applications of this general result are given to the study of strongly
homogeneous o-fields of sets in Polish spaces and, in particular, to the o-fields
of Lebesgue-measurable sets and of the sets with the Baire property in Euclidean
spaces.

2. Notation and terminology. We denote as usual by 2 (X’) the power-set of a
set X, by o the first infinite ordinal, and by ¢ the cardinal number 2°, The cardina-
lity of a set X will be denoted by | X|. We recall that a family of subsets of a set X
closed under the operations of countable union and complementation (relative to X)
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is called a o-field of sets in X [10] or a c-algebra. If & is a o-field of sets in a set
X, then the pair (X, #) is caled a Borel space [8]. Countable means finite or countably
infinite. The o-field of Borel sets in a topological space (X, ) is the smallest o-field
of sets in X containing 7. This o-field will be denoted by %,. Let (X, #) and
(Y, %) be two Borel spaces. A bijection f: X — Y with f(#)=%, where f(F)={f(F)
:Fe¢#}, is called a Borel isomorphism of the Borel spaces (X, # )and (Y, 9). If X=Y
and F =9, then f is called a Borel automorphism of the Borel space (X, #). If (X, %)
is a Borel space and Y< X, then # |y ={V (| F:F¢Z } fs a o-field of sets in ¥V and
the pair (¥, # |v) is called a subspace of the Borel space (X, #). For every Borel
space (X, #) the family Jz={F¢F:2(F)=F} is obviously a c-idealof sets in X

(i. e. the family Jz is closed under the operation of countable union and if Acg
and B A, then B¢Jz ). We define the co-finality ¢f (# ) of the o-field of sets & in
X as follows: ¢f (F)=min{cf (| F|): F¢F\ Jz}. A ofield of sets # in X and the

corresponding Borel space (X, #) are said to be strongly homogeneous provided that
any two subspaces F, and F, of the Borel space (X, #) with F,, F,¢F\ J& and | F,|
=| Fy| are Borel isomorphic. Let (X, 7)be a Borel space and let p be a measure on
ZF. If p is the completion of p, then the o-field {F ) N:F¢ % and there is a set F¢F
such that £25N and p(£)=0} of sets in X on which p is defined will be denoted
by #. For the definitions of other standard notions of measure theory the reader is
referred to [5] and [8]. A set § in a topological space X is said to have the Baire
property, if there is an open set U in X such that the symmetric difference SAU
=S\ U)U(UNS) is of the first category in X. The o-field of sets with the Baire
property in X will be denoted by #Py. By J*, Mi,and M7 we denote, respectively,
the o-ideals of countable sets, the sets of Lebesgue measure zero, and the sets of the first
category in the Euclidean space R". We recall that a Polish space is a separable, com-
pletely metrizable topological space and an absolute Borel space is a Borel space iso-
morphic to a Borel subset Bin a Polish space equipped with its relative Borel structure 2.
We denote by Sy the general symmetric group of all autobijections of an infinite set X,
This group acts naturally on 2 (X').Let o/ be a family of subsets of X. The subgroup
G (A)={s€Sx: s(#)=o/} in Sy is called the stabilizer of o, If G is a group and
H=G, then by Ng(f) and Cy(H) we denote, respectively, the normalizer and the
centralizer of /7 in G. The center Cy4(G) of G will be denote by C(G). A group G is
said to be perfect, if C(G)={e} and for every of its automorphism ¢ there is an ele-
ment #¢G such that @(g)=hA.g.~A ! for all g¢G.

3. The stabilizers of strongly homogeneous c-fields of sets in separable metric
spaces. Main theorem. Let (X,d) be an uncountable separable metric space and
let # be a strongly homogeneous c-field of sets in X of uncountable co-finality con-
taining the o-field of Borel sets #y. Then the stabilizer of # is a complete subgroup
of Sy coinciding with its normalizer in Sy.

We shall divide the proof of the theorem into four steps.

Step 1. Since every singleton in X is closed, it is contained in &, and hence
in #. It follows that ¥(#) contains all transpositions of X. Therefore we have C(%(#))
={id} and Ay—9(F). By the generalization of the Schreier-Ulam theorem mentioned
above for each ¢ ¢ Aut(%(#)) there exists an element 4 ¢S, such that ¢(g)=ho goh?
for all g¢9(#). Thus we have that Iz(NSx (9(#)) and it suffices to prove that

NSN(Q(.F)):Q(.?'). It can easily be verified that 4(#)=9(/z).
Step 2. We first show that i(/z)=Jg for all héNsx (9(#)) or, in other words,
that Ns (9(F)N=9Ug) Let heNs (9(F)), then h-9(F)h'=9(F) and clearly
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h-%(F)-h~' =% (h(F)). Let us verify the inclusion #(/z)=# by transfinite induction
on the cardinality of the sets A¢Jz. Let a=min {|A :A¢J5 and A(A)¢ F}. Obvi-
ously a>o. Let us consider a set A¢Jg4 such that |[A|=a and 2(A)¢ #. One can
find two subsets A, and Ay of A such that A,UA4,=4, 4,1 4,=@, and |A,|=|4,|
=a. Let f: 4~ A, be a bijection and let g'¢Sy be defined as follows: g'|A,=f,
g |A3=f"1, and g |x~a=idx~ 4. Then for each B¢ # we have g'(B)=(B\A4)U g(BNA4))
Ug'(BNA,). Since BN\A¢F, g(BNA;)=A, and g'(BN A))c A, we have that g'(BN A,),
2'(BN Ay €F and hence g'(B)¢ #. Since g'~'=g’, we have also that g'—(B)¢ # for all
B¢ ZF. Thus g(F)=F and g N (F)=F (or F=g'(F))and so g’ € 9(F). [f weset g=hog
oh™1, then g¢ h- YU F)-h =% (W(F))=9(F).lf cf(e)=0,then A= |J Bi, where | B;|<a and

obviously Bfe.ly, i¢o. By the definition of a we have h(‘B(,-;’( F, icwo, and hence
h(A)= 1U A(B:)€¢ #. A contradiction. So we may assume that cf (a)> . If we set K=#A(A),

fo
then it is evident that K={x¢ X: g(x)#+x} and |K|=|A|=a. Let Q, denote the set

of positive rationals and let K,={x¢X: d(x, g(x))>r}, r¢Qs. Then K= (lEl; K,. Since
reQy4

cf(0)>w, there is an r¢Q, such that |K,|=a and there is a point z¢ K, such’that
for every of its neighbourhood U, we have | U, N K, | =a. Let us consider the open ball B=B
.(z; r/4). 1t is easily seen that | B K,|=a and B g(B N K,)= @-By the construction gis an
involution, so g=g! and hence BNg Y BNK)=@ or (BNK,)Ng(B)=. Let
C=B\g(B). Since BNK,=BN(X\g(B)=C and | BN K,|=0, we have that |C|=qa.
On the other hand, C=B\2(B)=BN\g(BN K)U(BNK)=B\LB\K)=B\(B\K)
=BN K=K and hence |C|<a and C¢h(Jz)=h(F). Therefore | Cl=a and, since B¢F

and g¢9(F), we have C=BN(X\gB))¢#.1f | K\ C|<a, then obviously lh—l(K\C)l
<a and A~(K\C)€ /&, and again by the definition of a we have A(R7(K\C))

=K \C¢#. Thus h(A)=CU(K\C)¢F and we obtain a contradiction. If now
| K\C|=a, then we may consider a bijection ¢£: C— K\ C and define the map s¢Sy

by setting s|c=f, s|k~c=£t"1 and s|x.x=idx k. It is easily seen that s¢ ¥ (2(F))

=%(F). Since C ¢ #, we have s(C)=K\C¢F and hence 2(A)=CU(K\C)¢#. Cont-
radiction again. Thus {A¢Jz:4(A) ¢ F}=( and we obtain 4(J/g)=Z. Since k“'ENsx

({4(.9')), by repeating the argument, with & instead of 2~!, we obtain that 27'(Jg)=F
It follows that A(/gz)—Jgz and A '(Jg)=Jgz and we obtain the desired equality
h(Jz)=J g and hence the inclusion Nsx(g(f))cg(lf).

Step 3. We say that a set F¢#\Jgz is split if it can be divided into two
disjoint subsets F, Fo€ F\Jg of cardinality | F|. We shall show that every FeF\Jg
is split. Let B=min {|F|:F€ F\Jg and F is not split}. Let us consider now a set
FeF\Jg such that | F|=B and F is not split. Then there is a point x€F such that
for every of its neighbourhood U, we have |U,N F|=p and U, F¢Jg. Indeed, if

on the contrary for each x ¢ F there is either a neighbourhood U, with |U.NF|<B
or a neighbourhood U with U F€Jg&, then we can take some basic neighbourhoods

B,cU, and B.—U, from a countable base # of open sets in X. Obviously [B, N F|<p
and B.(\F¢Jgz. Let B={x¢F: there is a neighbourhood U, of x such that |UsN F

<P} and let B'={x¢F: there is a neighbourhood U, of x such that U ,NFeJ/g }

Clearly B= UB(B,ﬂF) and B' = UB(B;.']F) and F=BUB’. Since for each x¢B
x¢ x¢

B,NF¢#, we have B¢F and hence Be¢F\Jg, for B'¢Jg and F¢lg. Since
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cf (F)>o, we have that ¢f (B)>w» and hence|B|<p, for B is a countable union of sets
B.N F. Thus, by the definition of B, the set B is split. Let B=B,UB,;, BN By=Q,
By, By¢ F\Jgz, and | B, |=|B,|=|B|. Let us consider a partition B'=B, U B,;, BB,
=@, and | B{|=| B, |=B.1If we put F, =B, U(B{\(B, U By)) and Fy=B; U (B, \ (8, U By)),
then |F,|=|F|=B, F, Fa¢ F\Jz, FiNF,=Q, and F U Fy=F. Therefore F is split

and we obtain a contradiction. Thus we can choose a point x¢ F such that for every
of its neighbourhood U, we have |U,N F|=Band U,NF¢Jgz. Let V,=B(x; 1/n+1),

n€o, and let F,=F\V,. It is evident that F= | F,U{x}. Since ¢f(B)>w, there is
nfow

a number n,€® such that | F, |=p. Since Jz is a c-ideal of sets in X containing all

singletons, there is a number m,¢w® such that F, ¢/z. Thus, by setting m=max

{no, m,}, we obtain that F=(V,NF)UF,, V,NF¢Jgz, Fa¢Jg, and |V, N F|=|F,|=B.

It follows that F is split. Contradiction. Thus the set {F¢F\Jz:F is not split} is

empty and hence each F¢F \J4 is split.

Step 4. Finaly we will show that 4A(F\Jz)=F for all lz(NSY (9(#)). Let us
consider the cardinal number y=min {|F|[:F¢ F\J4 and A(F¢ F}. We can find a
set A€ F\Jg such that |A =y and A(A)¢ #. Making use of Step 3, we can divide
the set A into four mutually disjoint subsets A:¢#\Jgz of common cardinality y
i=1,2,3,4. Since # is strongly homogeneous, there is a bijection f: A, — A, such
that f(# |, )=F |4,. Define the map g'€Sx as follows: &' |a=/ & |a,=f"" and
g' |_v\(_4|u,1,)==l.dx\(,4lu,1’). It is clear that g’(g(f) Let A’:Al UAg, then A’¢j§ and
A'={x¢X: g(x)+x}. Let K=h(A") and let g=hog'oh . Then g¢h-G(F)-h!
=Y (W F))=9(F) and K={x€X: d(x, g(x))>0}=r(A,))h(A)€A(F). If we set E,
={x€X: d(x, g(x))>r}, r€Q,, then K= l_é E,.Since A"¢Jgz and h(Jg)=Jg, we

reQy
have K=h(A')¢ /4. Since /g is a o-ideal of sets, there is an 7,€Q, such that
E, ¢ J& and, since cf (Y)>o, there is r,€Q, such that |E, '=v.If we take r=min
{ro 11}, then |E,|=y and E,¢ /g . Therefore there is a point z,¢ £, such that for every
of its neighbourhood U, we have U, NE,¢ /g and there is a point 2,¢ £, such that
for every of its neighbourhood U,, we have |U,’ﬂE,|=y. Let us consider the balls
B,=B(z,; r/4) and By=B(z,; r/4) and let C,= B\ g(B,), C;=B,\g(B,), and C=C, ) C,.
Clearly C,, Co¢ # and hence C¢% . By repaeting the argument of Step 2 we obtain
that |Cy|=Yv, B, E,=C, and hence C,¢ /4. Therefore [C|=v and C¢ F\ug . Simi-
larly, making use of Agand A, instead of A, and A,, we can find a set D=h(A;U A,)
X\ C such that D¢ #\ /4 and |D|=v. Since # is strongly homogeneous, there
is a Borel isomorphism f': C-—+D of the Borel subspaces C and D of the Borel space
(X, #). Define the map f¢ Sy putting flc=f", flp=/"", and f|x\(cun =idx\(cup). It
is easily seen that f¢ 4(#)=9(h(#)) and hence f(K)€h(F), so K\ f(K)€h(F), but
KN f(K)=K\((K\C)=D)=C. Thus we have Ce(FNMFN)Jg, |C|=v, and
| X\C|=7Y, hence | X\C|=|X|. It follows that 2 (C)e(x '(F)NF)\Jg and
|A-1(C)|=7v. Let f,: h~{C)—~A be a bijection such that f(F\A N C)=F|,. If
XN\A€Jgz, then by Step 2 A(X\A)=X\A(A)¢F and hence h(A)eF. It XN\A¢ g
and | X\ A |<7, then by the definition of v, we have AZ(X\A)¢# and again h(A)¢ #.
Finally, if X\ A¢ /g and | XN\ A|=7v, then | X\ A|=|X|and, since D¢Jg, ' (Jg)
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=Jg, we have A7\(D)¢J gz Since A YD)=X\ 41 (C), we have X\AHC)¢Jg
and obviously | X\ 2~(C)|=v=| X\ A|. Therefore thereisa bijection for XN\A&7HC)
— X\ Asuchthat fo(F |y 4-1,0)=F |y - Now we can define the map p¢Sy by set-
ting ply-ic =f1 and Py r1c =f2- Obviously pe9(F)=9(h(F)=%(h"\(¥F)) and
hence A=p(h—(C))¢ h—(F). Thus ~(A)¢F and we obtain a contradiction. So the set
{(FeF\Jz:h(F)¢F} is empty and we have that A(F\Jz)=F for all h(NSX(Q(f)),

and hence A YF\Jg)=F. Since hJgz)=h'(Jg)=Jg, we have MF)cF and
h~(F)=F and hence h(F)=F, for all h(NSX(Q(f)). Thus Nsx(g(f))=g(f) and

this completes the proof.

It is independent of ZFC that every uncountable cardinal <2° has uncountable
cofinality or, in other words, that 2°<w,.

Corollary 3.l. (2°<e.) If a second-regular strongly homogenous o-field F of
subsets of an uncountable set X contains a second-countable topology on X, then
Nsx(g(.?))zg(f) and 9(F) is complete.

4. The stabilizers of the o-fields of Borel sets in uncountable Polish spaces.
By the Alexandroff-Hausdorff theorem every uncountable Borel set in a Polish space X
contains a homeomorphic image of the Cantor discontinuum D® and hence has the car-
dinality ¢ of the continuum. Thus ¢f (#y)>o. By Kuratowski’s theorem the o-field Zx
of Borel sets in an uncountable Polish space X is strongly homogeneous. Thus we
deduce from the main theorem the following

Corollary 4.1. (ci. [7]) The stabilizer of the o-field of Borel sets in an
uncountable absolute Borel space X is a perfect subgroup coinciding with its norma-
lizer in the general symmetric group Sy.

Remark. By the Alexandroff-Hausdorff theorem and Kuratowski’s theorem in an
absolute Borel space X we ngz [X <o

5. The stabilizers of the o-fields of Lebesgue-measurable sets in Euclidean
spaces.

Lemma 5.1. Let X be an uncountable Polish space and let (X, &y, W) be a
space with a regular, non-atomic, o-finite measure p. If u is the completion of M,
then the o-field By of w-measurable sets in X is strongly homogeneous.

Proof. Let A’, B'ng\fg . Then p(A)>0 and p(B')>0, for p is complete.

X

Since p is regular, n is also regular and hence there exist two Gs-sets A and B in X
such that A'—A, BB, and p(AN\_A")=np(B\B')=0. Since A, B¢ #y and p(A)=wA"),
p(B)=n(B'), we have p(4)>0 and p(B)>0. The subspaces A and B of X and Polish
spaces. Since p is non-atomic, A and B are uncountable and hence |A|=|B|=c. If
n(A)< oo, then we put for each E¢ B, ME)=n(E)/n(A). If u(A)=oo, then we can find
a sequence {P,}.¢o of mutually disjoint Borel subsets of X such that U P,=X and

fo
0<p(P,NA)<W(P,) <o, ntw, for p is o-finite, and we put for each E€B, A(E)
= X WENPY2"WANP,). Thus, in any case, we obtain a non-atomic probability
ne==1

measure A on #,. Similarly we define a non-atomic probability measure v on Bg. By
the isomorphism theorem [8, 26 6] the spaces with measures (A, %, 1) and (B, %z V)
are isomorphic (i. e. there is a Borel isomorphism ¢:A,— B, of the Borel spaces
(A, #,) and (B, #p) such that A9~ '=v, where A, (B, B ¢®Bp and MA\A)
=v(B\B,)=0). In particular, for F¢ &, we have that MF)=0 iff v(@(F))=0. Let
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now B“=B'No(A'NA,) and A"=¢(B)=A". Then p(B")= p(B’) and p(A")=p(A").
We may consider that | A"\ A”|=|B'\B"|, for we can find a set CcA'NA,, |C|=c,
such that C¢4, , M(C)=0, and o(C)=B". It we put B"=B'N0o((A'N A,)\C) and
A"=¢7}(B"), then C=A"\A” and ¢(C)=B'\ B”, and we have | A\ A" |=|B\B"|=c.
It can easily be verified that ¢|4 : A”— B” is a bijection such that ¢(#,»)=2Bg.
Let y: A\ A" — B\ B" be a bijection. We define f: A"— B’ via: f|u=0¢|,» and
fla~a=v. Let now FeBy |, i. e. F=(MUN)NA’, where M¢By, NoE¢B, and
WE)=0. Then F=(A"NMUN))UANA)INMUN)=A"NM)UA" N N)U((A\A")
NMUN)). Let D,=A"nM, Dy=A"NN, and D;=(A'\NA")N(M|JN). Since D, ¢ B 4
and f(D,)=0(D,), we have f(D,)¢ 2z and hence f(D)=KNB"=KNB NeA" A4,
=KNe((LUN)NA)NB, where K¢Bg, LcBy, N=StB,, and p(S)=0. Since
(LUNINA=(LNA)UNNA)and LN A €B, , we have o(L [} A,)€ Bp, - Since NN A,
S, we have o(N A)co(S)e A, and hence pu(9(S))=0, for p(o(S)) =0 is equivalent
to v(¢(S))=0, which in turn is equivalent to A(S)=0 or u(S)=0 Thus f(D))=K
NE@LNAYUONNANNB = (KNo(LNA))UKNo(NNAY)NB €Bylp . Since Dy
CE¢B, and WE)=0, we have f(D;)=¢ (Dg)=(E) and p(@(£))=0, for this is equi-
valent to w(¢(F))=0, which in turn is equivalent to A(£)=0 or p(E)=0. Since
Dy ANA" f (D))= f (AN A)=0(A'\A")=B'\B" and since p(B"\ B")=0, there is a
set T¢€A, such that p(7)=0 and B \B'<T. Thus f(D,)D3)=e(E)UT and
W@(E) U T)=0 and hence f(F)¢Byly . So f(By|y)=By|p - Similarly one can show
that f~'(#y |a) = Bx|s and hence f(By|s)=RBy|p . This completes the proof.

Theorem 52. The stabilizer of the o-field of w-measurable sets with respect
to the completion p of a regular, non-atomic, o-finite Borel measure p inan uncount-
able.Pg‘lIslz space X is a complete subgroup of Sy coinciding with its normali-
zer in Sy.

Proof. By lemma 5.1. the o-field #y of p-measurable sets in X is strongly homo-
geneous. If F¢ a?x\jék then F=BUN, where B¢#, and NcE for some E¢Zyx

with u(£)=0 and | B|>o. Therefore | F|=c and we have that cf(#y)>o. Now we
can apply the main theorem.

Remark. Since |#y|=c, there exists a set Y—.X that mects every uncountable
Borel set B¢, (together with its complement X\ Y) [2]. For every p-measurable
subset F—Y (or F=X\Y) w(F)=0 and hence Y is not p-measurable. Therefore, if

n(A)>0, then one of the sets ANY and AN(X\Y) is not p-measurable so A¢J§ .
- L X
Thus we have ngz {E¢By:n(E)=0}.

Corollary "5.3. The stabilizer of the o-field of Lebesgue-measurable sets in
Euclidean space E is a compiete subgroup in the symmetric group Sy coinciding
with its normalizer in Sg.

6. The stabilizers of the o-fields of sets with the Baire property in Polish

spaces.
Lemma 6.1. The o-field BPy of the sets with the Baire property in an
uncountable Polish space X is strongly homogeneous.
Proof. Let A, B'¢#Py\Jy, . Let [X]<* be the o-ideal of countable sets in
X

X, let 9N, be the o-ideal of the sets of the first category (or meager sets) in X, and
let /sy be the set of all isolated points in X. It is easily seen that [X]<*={CUS
:CeM,y and S‘:st}":jwpx and hence A’ and B’ are uncountable sets of the second
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category in X. Let us consider two Gs-sets A and B in X such that A=A’ BcB'
and A’'N\A, B\ B¢M,. Since A and B are uncountable Borel sets in X, they contain
a copy of the Cantor discontinuum D® and hence A|=|B|=c. Clearly A and B are
separable completely metrizable spaces and hence they are homeomorphic to Gs-subsets
of the Hilbert cube [0,1]°. Let / be the subspace of irrationals in [0,1]. We shall show
that the Borel spaces ([0,1}>2P,; o) and (/, #P;) are Borel isomorphic. Let us consider
the space M={c,/3+---+ ¢n/3"+---:¢,=0 or 2}=D°® homeomorphic to / and let
t: M—|[0,1] be defined via £(c,/3+---+ €,/3"+-++)=¢y/22+ - +C,/2"+ +--- . Then ¢
is a continuous bijection such that #~' has a countable set of discontinuity points.
Let f: /—]0,1] be a continuous bijection such that f|.. is a homeomorphism, where
Ccl and |C|=o. If we consider the map fo: /o—[01]e (x, Xp -2 )— (f(x0),
f(x....) then fo | o is @ homeomorphism and Ce is obviosly a set of the first
category in /©, for / is dense in itself. The set f°(C®) is also a set of the first cate-
gory in [0,1]°. Since /® is homeomorphic to /, we obtain a bijection ¢:/—[011] such
that ¢~ is a homeomorphism, where F is of the first category in / and o(F) is
of the first category in [0,1]e. Therefore ¢ is a Borel isomorphism of the Borel spaces
(1, #P;) and ([0,1]°, BP; ). If now A and B are two Gs-sets in [0,1]° and | A |=|B]|
=c, then ¢—!(A) and ¢—!(B) are separable, completely metrizable, uncountable, O-di-
mensional spaces and hence ¢NA)=N,U/, and @~ (B)=N,/,, where | N, =|N,|
<o and /,, /, are homeomorphic to / [6, § 36, IV]. Thus the Borel spaces (¢~*(A),
BP,a) and (9 '(B), BP ) are Borel isomorphic and so does the input A and
B. It can easily be verified that the Borel spaces (4’, BP4) and (B', BPp’) are also
Borel isomorphic and this completes the proof of the lemma.

Remark. The existence of a Bernstein’s set ¥ in X that meets together with
its complement every uncountable Borel set in X implies that jg,,x={CUS: CeMy

and Sc/sy}. Indeed, every set B—Y \[/sx with the Baire property in X is of the

first category in X and the same holds for X\ V. Therefore, if AcBPNJCUS:CeMy
and ScIs,}, then one of the sets ANY, AN(X\\Y) does not have the aire property
and hence A ¢ /g, . Thus we obtain that 13PX={CUS: CeM, and Sclsy}.

Theorem 6.2. The stabilizer of the o-field of sets with the Baire property
in an uncountable Polish space X is a subgroup of Sy coinciding with its own
normalizer in Sy.

Proof. By lemma 6.1 the o-field #Py of sets with the Baire property in X is
strongly homogeneous. lfBeaiPx\Jw,,‘,, then B contains an uncountable Gs-set in X

and hence |B|=c. Thus one have ¢f(#Py)>w and we can apply the main theorem-

Corollary 6.3. The stabilizer of the o-field of sets with the Baire property
in an Euclidean space E is a complete subgroup in the symmetric group Se
coinciding with its normalizer in Sg.

In conclusion we give a characterization of the elements of the stabilizer Y(BPx)
for a Polish (in fact second-countable) space X. We may assume that the set of non-
isolated points in X is of the second category in X, for otherwise BPy=2(X) and
g(gpx)=SX.

Proposition 6.4. Let X and Y be two second-countable topological spaces
such that BPyx+?(X) and BP,+2(Y). Then a bijeclion f. X — Y is a Borel iso-
morphism of the Borel spaces (X, #Pyx) and (Y, 8Py) iff there is a set Atlg,

X

such that f (A)(Jg,,y and f|x~a is a homeomorphism.

Proof. Let f be a Borel isomorphism of the Borel spaces (X, #Py) and (Y, 8Py)
and let {B;};¢o be a countable base of open sets in Y. Since f(Bi) ¢ #Px, we have
7Y (B)=(UN\Mi)UN;, where U; is open in X and M, Ni¢DYy, i€co. Let A’
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= U (M:UN)). It is easily seen that f|y. 4 is continuous. Indeed, if V is an open set
ifo

in ¥, then V= k[(_J By, and fl (V)= kL(J f_l(Bfk)\A"_‘kl(Jm(Uik\Mik)UNik\A'
= U Ui\A4, for M, UNiy, = A, k¢o. Thus f|gl (V) is open in X\ A’ Similarly,
kfo

making use of a countable base in X, one can find a set B’ of the first category
in Y such that f—!z is continuous. Since, J is a Borel]isomorphism,f(Jgpx)zjgpyand.

since A ¢ Bry> Béjg,,y, we have f(A)éJgB.py and f ~Y(B)¢ jH?Px‘ Therefore A=A" |y fYB')
€Jgp, and f(A)=B'U f(A) €I gp,, and flxa: XNA—Y\f(4) is a homeo-

morphism.
Let Aéfgpx such that f(A)(JQ,)Y and f|x.a is a homeomorphism. For each

B¢#BP; we have B\ (X \ A)¢BPx ». Since f|x. 4 is obviously a Borel isomorphism
of the Borel spaces (XN A, #Px.a) and (Y'\ f(A), BPy-,4), we have f(B\A4)
€ APy~ 4. Since Y\ f(A)€ APy, we have BPy ;4 <=RBPy and hence f(B\ A)¢ BP,.
In view of f(BNA)c= f(A)ejﬂpy:.a?Py we have f(BN A)¢#BPy. Therefore f(B)

=f(BNA)US(BNA)EBP,. Thus f(#BPy)=#P, and similarly one can show that
f Y #Py)=BPy. This completes the proof.

Corollary 6.5. Let X and Y be two second-countable dense in itself topo-
logical spaces of the second category. Then a bijection f: X—Y is a Borel iso-
morphism of the Borel spaces (X, BPy) and (Y, BPy) iff there is a meager set A
in X such that f(A) is a meager set in Y and f|x- a is a homeomorphism.

Corollary 6.6. Let X be an uncountable Polish space. Then a bijection
f€Sx belongs to 4(BP,) iff there is a set Ac—X such that AUf(A)E.Ing and

flx~causay is an autohomeomorphism of the subspace X\ (Al f(A)=X.
Corollary 6.7. Let X be an uncountable dense in itself Polish space and f¢Sy.
Then fe9(#Py) iff there is a set Ac X such that A\ f(A) is a meager set in X
and f x-ausna) is an autohomeomorphism of X\ (AU f(A)).
I wish to express my gratitude to V. I. Ponomarev and M. M. Coban for valu-
able discussions.
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