Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ON THE LIAPUNOV AND KELLOGG SURFACES
ABDULLAH SHIDFAR

This paper describes the difference between the Liapunov surfaces and the Kellogg surfaces. It is
interesting to note that the smoothness in Kellogg sense is stronger than of smoothness in Liapunov
sense. The difference is illustraled by giving a surface that is everywhere Liapunov but nowhere
Kellogg.

1. Intoroduction. A surface ¢ is smooth in the Liapunov sense, or briefly a Lia-
punov surface, if it has a tangent plane at each point, and also there exists a local
coordinates at any point of the surface, z-axis along normal, x- and y-axis in the tan-
gent plane, such that a portion of the surface in this neighbourhood has the equation
z=f(x, y).

If n, and nq are the unit normal vectors at any points P and Q of o respectively,
then the following condition which is called Liapunov condition, must be satisfied

(1) 0<Drv; 06=cos™' (n, ng) r=|P-Q|

for some D>0 and 0<v=1.12
We call a surface o is smooth in the Kellogg sense, or briefly a Kellogg surface
if it can be locally represented by z=f(x, y) which has continuous derivatives of the
second order in this neighbourhood.?*
fA plane and a sphere are Liapunov surfaces, but a cube and the following
surface

x¥sin (1/x?)+y?sin (1/y%); x+0, y=0

f(x )= x?sin (1/x2); x40, y=0
X ¥)= | yisin (1/y2); x=0, y=0
| 0s x=0, y=0

are not Liapunov surfaces, because the cube has no tangent plane on its edges and
the second surface does not satisfy the Liapunov condition at origin.

The Liapunov and Kellogg surfaces has been applied by mathematicians in poten-
tial theorys The purpose of this paper is to describe a clear distinction between them.

2. Main results

Theorem. Let o be a surface with tangent plane at each point,and also there
exists a local coordinates at any point of the surface with z-axis along normal, x-
and y-axis in the tangent plane, so that a portion of the surface in this neighbour-
hood has the equation z=f(x, y). This surface is a Liapunov surface if and only
if f. and f, exist and are Holder continuous.

Proof: Suppose that f, and f, satisfy the Holder condition, that is,

(2) |fdx, ¥)=£0,0)| =Dy(x*+y*)""? for some D,>0 and 0<v's1
and
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(3) [ fy(x, ¥)—f,(0, 0)|<=Dy(x2+y2)¥"22, for some Dy>0 and 0< v'=1.
If 6=cos—!(n,, ng), then by assuming |0|<mn/2, we have
o+
(4) 02=4sin%0 <4 II‘Tffé_%D?r?V fe=fe(x, ¥) and f,=f,(x, ¥)

where D?=2 max (D?, D?2)and v=min (v, v*).
Conversely, if 0=Drv for some D>0 and 0<v=1, then sin 0<0<Dr" implies
f’i 2 2( 2 3 2\v
(5) m* \sm O\D (X +‘y +Z)
Therefore f.(x, y)<DMr¥, for any M=1+F1I+f2.

Now we shall show that

(6) rP<=K(x?+y?), for some K>0.
By mean value theorem, we have
(7) f(x, y)=xf(0x, 0¥)+yf,y (0 x, 0y), for some 0<O<]1.
Thus
Rkl LAY A2y fufy
X2+ y? x4+ y?
(8) =1+2M?=K, for any N=max (|f.|, |f|)-

Consequently f, and similarly f, are Holder continuous of class v.

Corollary 1. Any Kellogg surface is a Liapunov surface.

Corollary 2. If f is a Liapunov surface of class v=1, it is a Liapunov sur-
face of class O<v<l1.

Corollary 3. If z=f(x, y) is a Liapunov surface, then it is of class C.1

Let we have two surfaces, that are identical and twice continously differentiable
everywhere except that one of them is not twice differentiable in a finite number of
points but satisfy Liapunov condition at these points. The single layer potentials gene-
rated by continuous source distribution over these surfaces are equal. Therefore in the
following section we are going to introduce a surface that is everywhere Liapunov
and nowhere Kellogg surface.

3. A surface that is everywhere Liapunov surface and nowhere Kellogg
surface. The function f(x)= 2 a,(x), where ay(x) is the distance from x to the nea-
k=

rest integer and a,(x)=2"*a (2"x) is called Waerden function. This function is conti-
nuous with no two-sided derlvatlve at any point,® nor does it have one-sided deriva-
tive anywhere.?

Now we consider the following function

9) z=h(x) = Z f(tat,

where f(x) is the Waerden function. The surface z=A(x) is everywhere Liapunov and
nowhere Kellogg. In order to prove this statement it is sufficient to show that the
function £,=f(x) is everywhere Holder continuous, i. e., for each v between O and 1,
there is a constant M, such that

(10) fx+)—f(x)| =M [t]Y

for any two real numbers x and £
We first consider the case |#|= 1. In this case, we can always find an integer n,
with n0, such that
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(1) 2-n-1g|t|s 2"
It can easily be shown that
(12) la(x+)—ay(x)|<|¢|
for any two real numbers x and ¢ From (11) and (12), we obtain
(13) Il ax +Ht)—ax) | =n|t|sn27 I [ 2]
Moreover, since
(14) 0=<ay(x)=2"*1,
we have
(15) | ar(x+)—ay(x)| =27
It follows from (11) and (15) that for any |¢|<1,
(16) Iz lax+)—ayx)|=2"<2|t|<2|¢]
Summing inequalities (13) and (16), we obtain
(17 Ip ol anx+8)—a(x) | ={2+n27"C 2]
But it is not difficult to inspect that
(18) n2—nl—v) < [2182, |n 21—v]—1

for any integer n=0. By choosing M,=2+[2"/172.122'-V]~!, we can readily conclude
from (17) the validity of (1) for any |#/=1.
Now we consider the case |#|>1. It follows from (14) that

(19) 0= f(0)=1,
and for any [£|>1, this yields
(20) lf(x+H—f(x)|=1=[t]

for any two real numbers x and £ Hence, choosing the same M, as above ensures the
validity of (10) also for the case |#|>1, and the proof is complete.

4. Conclusions. It has been shown how the smoothness in Kellogg sense is strong=
er than of smoothness in Liapunov sense. Our analysis shows that there is always a
surface that is everywhere Liapunov but nowhere Kellogg. Therefore, the single layer
and double layer potentials generated by a continuous source distributions must be
defined over Liapunov surfaces.
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