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DIFFERENCE METHOD FOR THE LINEAR DYNAMICAL PROBLEM
OF COUPLED THERMOELASTICITY

E. A. VARBANOVA

A family of difference schemes for the linear dynamical problem of coupled thermoelasticity is
constructed. The error estimate of the approximate solution is obtained. Some numerical results are
given and discussed.

1. Introduction, Thermoelasticity deals with processes in which, on one hand, de-
formation and stresses are produced not only by mechanical forces, but by tempera-
ture variation as well, on the other hand, deformation acts as a source or sink of heat.
So, in thermoelastic problems the mechanical and thermal aspects are coupled and
inseparable.

In practical applications it is usually permissible to disregard the influence of coupl-
ing and to evaluate the temperature and deformation fields separately. This assertion,
however, is not always true. First of all, for some synthetic materials, such as plastics,
the effect of coupling may not necessarily be negligible. The coupling also plays a
noticeable part in the phenomena of wave propagation and thermoelastic damping.

Although the foundations of thermoelasticity have been laid in the first half of
the nineteenth century by Duhamel [1] and Neumann, only during the last four deca-
des the theory reached a certain completeness and many applications to engineering
problems have been successfully made.

The investigations of thermoelastic problems have brought forth numerous theore-
tical and experimental publications [2—7]. They represent various facets of the theory
of thermoelasticity and some analytical approaches are applied for studying the raised
problems.

Very often rigorous solutions cannot be obtained and one must resort to appro-
ximate methods or to numerical procedures. In recent years considerable attention has
been paid to the numerical treatment of thermoelastic problems [8—14].

2. Basic equations of thermoelasticity. For the one-dimensional case the govern-
ng equations of thermoelasticity are:

(1) g —(+20) g+ Wa =R, (motion
B 0 0 o
) ¢p 5 =gz (k) tGA+2)aTo 55 =F, (x, ), slrlae:;fer)

where x is the space variable, { — time, # — displacement, 6=7—T, — the tempera-
ture increment, 7 — absolute body temperature, T, — the temperature of the natural
state, p — density, A and p — Lamé elastic constants, a — coefficient of linear thermal
expansion, ¢ — specific heat, & — heat conduction coefficient, F; — body forces and
Fy — heat sources.

Supplemented by appropriate initial and boundary conditions, the equations (1),
(2) represent the entire mathematical model of the thermoelasticity.
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The presence of the derivative 0%z/0xdf in equation (2) is a sign of the coupling,
existing between the temperature and deformation fields. A second such sign is visible
in equation (1) in the form of temperature gradient. The existence of coupling implies
that the solution of the system (1), (2) must proceed simultaneously. This fact contri-
butes considerably to the complexity of the coupled thermoelasticity problems.

The purpose of the present paper is first, to give an approximation of the dyna-
mic problem of coupled thermoelasticity based on the replacement of the fundamental
differential equations by corresponding difference equations and, secondly, to present
some numerical results.

Our attention will be centered on one-dimensional problems. It is convenient to
write the governing equations (1), (2) in a dimensionless form:

02 02

g R
00 0%

(4) '()T_fx§+ 20x0t ‘Fﬂ (X t)

where
ay=3h+2p) a To/(A+2u), ag=(3A+2u)o/cp

and the same letter is retained to denote the corresponding dimensionless quantity.
The parameter n=a, ay is called a coupling parameter. For some materials n<1.

For example, according to [5] the data for four common metals at 20°C are:
Aluminium 3.56<1072;

Iron (Steel) 1.14><10";
Copper 1.68>1072;
Lead 7.33 1072

3. Method of finite differences. Finite difference method is an effective method
for investigating problems of mathematical physics.

The construction of a difference scheme which approximates a given differential
problem is usually performed in two steps: 1) discretisation of the domain of indepen-
dent variables; 2) replacement of the differential equations by corresponding difference
equations and also formulation of difference analogous to the boundary and initial con-
ditions. The set of difference equations approximating the differential equations and
boundary and initial conditions is called a difference scheme. In fact it is a system of
algebraic equations.

To the system (3), (4) we associate homogenous boundary conditions

(5) 4, f)=u(l, =0, 000, )=0(1, H=0, £>0
and the following initial conditions
(6) (%, 0)—f (¥, 2% (x, 0= 9 (), 0(x, )=y (x), x€(0, 1),

where f(x), ¢ (x), v(x) are given real functions.

Consider in the domain D={0sx=1, 0<¢<¢*} the mesh o of points with coor-
dinates (x,=ikh, #;=jv), i, j being integers, T and % being time step and the step in

x-direction. More precisely 0=w,X ©, where w, is the mesh in the x-direction and
o, is the time mesh defined by

wp={x, =ik, i=0, 1,..., Ny h=1/N,},
Oc={ty=j5, j=0, 1,..., Ny t=*Ny},
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Let’s recall the nonsubscript finite difference notations and formulas introduced
in [15]:

y(x ) =y=y y(% tu)=y(xt+1)=y,
¥ (x5 b)) =y t—1)=y, yir=(y—y)v
v=(y—=y)n y7e=(¥y — 20+ )/ yi =(y+y0)2,
V(o )=y Y (Xixp O=Y(ThE)=Y;1y
Yr=(V=yiVh Y=(Yi1—Y)Ih

Yy =(Yirr—Yi)2h=(Y:+y7)2
Voo = Wi1— 22+ )R =(y.—y)/h

For every fixed value of £¢®. we introduce the finite dimensional Hilbert space

H,—1} (®,) of the mesh functions defined on ®, and vanishing at the boundary points
Xo, X, with the following inner product and norm:

@ p)=E v(x)p(x) &y v |P=(2, D)
X(I)h

We introduce also the Hilbert space /7,, with the energy inner product (v, p),=(4v, p)
and the corresponding energy norm |v|i=(v, v), which is equivalent to the first
given norm. The operator A is an arbitrary self-adjoint and positive defined discrete
operator: A=A4%>0.

Making use of the theory (see e.g.[16]) the following two-parametric family of
difference schemes approximating the problem (3)—(6) is constructed:

Y+ Ayeo+a,Mw=,(x, t);
(7 W+ AwP +a, My, =@y (x, 1), (x,8)€0
YVo=yn=0, w,=wy,=0,
V=fo V=0, @)=y,
For convenience the abbreviations Av=—v_-, Nv=v;,, v® =Bov + (1 —B) v, vio

=c(5+5)+(1—‘20)'v are used.
The scheme (7) can be obtained approximating the integral identity which corres-
ponds to the generalized solution of the considered problem:

1 o2 du dv dv 00 30 ap 0% ey
J Ga Utz ox— % G 0t Gx Pt ax 55 t 03 g ) dx= [(Fy v+ Fyp) dx,

Yhere v(x) and p(x) are arbitrary continuous functions with integrable derivativs in
2 (0, 1).
\ Thc)a time derivative 0%/df® is approximated on the mesh by the usual centred
difference representation, The temperature gradient 00/dx is approximated by first order
difference.

Varying the weights 0=<o, p=1 various schemes can be obtained. If the solution
of the differential problem (3)—(6) is sufficiently smooth the approximation error of
the scheme (7) is: O(t+A4?) for ®y=F, or ®y=F,+ O(t+h?).
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It can be proved that the scheme (7) is stable in the sense of
Theorem 1. Assume that the inequalities

(8) 6=0.25—0.25 ~%/7%, p>0.5

are satisfied. Then the following a priori estimate holds for the approximate solu-
tion (y, w):

J
C) 42+ @R+l @ [+ 2 (05 (@™ +w)[f}

i
sC{ly R+llwt el @i+ 2 ol ofl*+] 3] [-1))
where || - ||, is defined with

(10) |y le=Il y7 1P+ 72 (6—0.25) || y3|[3+0-25 || "+ + "I}

and C, is a positive constant independent on the data functions, the mesh steps and

the solution (y, w).
Proof. The method of “energy” inequalities will be used. Making use of the

formulas y©9= O.5(§+ ﬁ+t"’(c—0.5)y,—,, w® =w+Prw, the difference equations (7,)
and (7,) can be written in the form

(E+(c—0.5)A)y, +0.5 Ay +y)+a,Mw=0,.
(E+Brd)yw,+ Aw+a;My, = ®,.

Now we multiply the first equation by 2ty; =t(y,+ y7)=}—}, the second equation by
2tw and then we add the resulting equations: R
(E+(c—05)A) (¥,—yih Yetyr)+05(A(y+y) y—y)

(11 +2a,( Mw, y;i )+ 21(E+BrAyw, )+ 21(Aw, )
+2a,7(My,, @)=21(D,, yi )+ 2t(®y, ).

As A is a self-adjoint operator we obtain the relations (see e. g. [16]):
(E+(0—05)A) (¥,—y7), YitYr)=((E+c—0.5) Ay ¥0)
—(E+%(c—0.5)A) y+. y7)

AP+, =) =05[(A(Y+y) Y+ + XAV, ¥)]—05[(Ay+3).3+3)+ X Ayr y7))
Substituting this relations into (11), we arrive at the “energy” identity :
(E+7%(c—025)A)y,, 3)+025(A(Y+Y), y+y)+2((E +BrAyw, )
(12) +21 Aw, ©)+2a,5(Mw, y; )+2a51(My,, @)
=(E+(c—025)A)y7, y)+025(A(y+Y), y+¥)+2u(®s ¥;) + 21(®y, @).

The evaluation of the terms in (12) has been performed using the Cauchy-Schwarz
inequality and the e-inequality. We omit details, giving the final results:
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2v(E+Br Ayw,, @)=|[w]*—||w|P+ Br( @ ||3—|lw]2) +* e, |2+ Be® 1w 2,
21(Aw, w)=2t| 0.5(w+w)|3—05|[w,|%, °

2(Mw, y; )<te, || 0.5 (@+w) |4+ (t/e)) || vy [P+5 [| @z (| 24+ (/48) ;|2

2(My,, W)=ty | 0.5 +w) |4+ (t/es) || VR +e4t® | @,z |2+ (/48] e |
2@y, W)= 85| 0.5(w+w) |3+ (v/es)]| g |2y +547 || w, |4+ (t/486) || D2 |2,
20Dy, 3; )t || B2+ (v/4e) ||y |1

Here €(i=1,7) are arbitrary real numbers.
Substituting these estimations into (12) and after some rearrangements, we arrive
at the inequality

1y I3+ @ [P+ 72 | w2+ Br|@ |+ (B—0.5—| a, | eg—e,—| @ | &) [l |3
(13) +1(2—|a, | &, —| ay |es— &) || 0.5 (‘5‘1"'1’)"?4
| yIP+lw(p+Be]| @ |2+t y, |3+ aslt(es +£57) @y [t et || @

where &' =g ' +671+0.25 (e + &7 +¢77).

Now let’s choose €, €5 and &; so that 2—|a,|&,—|a,leg—€;>0 and let’s assume that
the assumptions of the theorem are fulfilled. To end the proof we sum up (13) for
n=1, 2,..., j and refer to the Gronwall’s lemma. Thus the desired estimation (9) is
obtained.

Whenever the conditions of stability (8) are fulfilled and the differential problem
(3)—(6) has a solution then the difference problem (7) also has a solution converging
to the exact solution. Theorem 1 can be used for estimating the rate of convergence.

The error vector z=(2,, 29)=(y—u, w—0) is the solution of a problem which is
analogous to the original problem (3)—(6). So the estimation (9) holds for (z,, 2,).
m:king use of this and by means of a Sobolev’s imbedding theorem, it can be shown

t
Theorem 2. Assume that u(x, t), O(x, t) belong to the classes WD) and

W3XD), respectively. Then the following estimate holds for the error vector :
(19) |21 [ls+ 122 [|as = Ca(A2+1),

J
where | /|2 =[[v* [P+t w4 B+t T (050 40| and Cy>0 doesn’t depend

on the data functions and the solution of the differential problem (3)—(6).

So the rate of convergence of the approximate solution to the exact solution is
of second order with respect to 2 and of first order with respect to .

Note that in [15] the following stability condition for the heat transfer equation

was obtained :
B=0.5—0.25A%/.

Thit difference (see (8,)) and the presence of additional temperature dependent terms
in the a priori estimate (9) are due the coupling terms in the heat transfer and motion
equations.

\
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4. Numerical results. To illustrate the foregoing results and to examine the algo-
rithmic properties®of the constructed family of schemes some numerical evaluations of
the temperature and displacement are carried out. As a convenient test an exact si-
milarity solution is used [17].

Table 1 shows the maximum deviation of the approximate solution (y, w) from
the corresponding exact solution (z,, 6,).

Table 1
max &, max &g
R | h l ’ \ —max|(y—u.)a| | —maxi(w—8,)8,
I 1 ol 0.1 5.0 % 159,
1l 21 005 0.025 2.7 % 0.5 %
1l a1 0025 0025 1.7 % 0.4/,

The approximate solution is seen to be in fair agreement with the exact solution.
Therefore the considered two-parametric family of difference schemes could be recom-
mended for numerical treatment of practical thermoelastic problems.

The influence of the coupling parameter n=a,a, on the accuracy of the computa-
ons is shown in Table 2.

Table 2
_ ‘ e
M l h i T ‘ ay ay l €, (%) €9 (%)
0.5 0 4.4 0.2
0.5 0.04 S 27/
11 0.1 0.1 0.1 0.04 4 0.17
0.5 0.5 8.5 3.5
1 1 80 70

It can be observed that the increasing of m above real practical values yields in-
creasing of the error of the approximate solution (it has already been mentioned that

n<l).
So, one should restrict the use of the scheme (7) to cases in which n<1.
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