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VAGUE CONVERGENCE FOR SUMS OF INDEPENDENT
RANDOM VARIABLES IN A TRIANGULAR ARRAY

G. SIEGEL

This paper deals with the vague convergence of sums of independent random variables in a trian-
gular array provided that the summands are infinitely small. It is proved that the limit function is an
infinitely divisible function. The main results concern necessary and sufficient conditions for the vague
convergence of sums to a special limit function. Such assertions generalize the classical results of weak
convergence of sums of independent random variables to a non-defective infinitely divisible distribution
function. Essential tools are quoted from G. Siegel [6] and H.-J. Rossberg B. Jesiak,
G. Siegel [4].

1. Introduction. For each n=1,2,..., X, X,,,,...,X,,,,_ denote independent
real-valued random variables. Let A, be some sequence of real numbers and put

(1.1) Sa=Xnt+ Xt - +Xu —A, n=1,2,...,

where k, is a sequence of integers tending to infinity. Introducing, further, the distri-
bution functions (d. f.)

Fu(x)=P(Xx<x)., F,(x)=P(S,<x), x¢R,
and supposing that the condition of uniform asymptotic negligibility is satisfied
we have
(1.2) max P(| Xp|=¢€) =0, n—oo, for all £>0.

1Sksk,

Then the classical theory of summation of independent random variables provides
necessary and sufficient conditions for the weak convergence of F, to a certain infi-
nitely divisible (inf. div.) distribution function. The present paper aims at deriving
necessary and sufficient conditions for the vague convergence of F, to a certain
limit function F which may be defective, i. e, 0<F(c0)<1. Vague convergence of F,
means that F,(/)— F(/) only for all bounded continuity intervals / of F. A detailed
study of this convergence can be found in [6]. So far vague limit theorems for sums
of independent random variables are derived only under the assumption of left-sided
tightness defined by

(1.3) 7!im sup F(—T) =0

(see [4, 5) and [7]). In this case probability mass of §, may escape only to + co.
In the present paper, probability mass may escape in both directions; our main result
is formulated in theorem 3.5.

2. Notations and preliminary results. Let M be the set of all non-decreasing
left-continuous and bounded functions F with A—c0)=0, and denote by C the set
of all continuous bounded functions. If the sequence F,¢M is uniformly bounded, then
we say that F, weakly converges to F¢ M (F, = F) if and only if
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186 G. Siegel

@1 T o) dF,(x) — _f o(x)dF(x), for all ¢¢C.

We say that F, vaguely converges to F¢ M (F,— F) if and only if (2.1) is guaran-
teed for all 9 ¢C with @(x)—0, as | x|— co. Sometimes this convergence is called
“weak convergence but for an additive constant” (see [2, 4]). Note that the conver-
gence F,(x)— G(x) for all continuity points x of an increasing function G implies
F,—~F=G—G(—>=)¢M; however the converse assertion does not follow in general.
Assuming F,— F we get lim F,(s¢) =F (). In this case F,= F holds if and only

if lim F,(c0)=F(=). Next we introduce the Fourier-Stieltjes transform (characteristic
function) of F¢M by writing
f(t)y= [ e**dF(x), teR.

Introduce, further, the integral characteristic f of F by

F)=[ f@ au, teR.

The correspondence between f, f, and Fis one-to-one and we have f(O):F(oo):E‘;ﬁo)_

Now we state a criterion for vague convergence. R
Lemma 2.1 ([1]). Let F,¢M. Then F,—F for some FeM if and only if f,—f

for some function f. In either case,f is the integral characteristic of F.

For later use we state also a condition sharper than f,—f.
Lemma 2.2 ([6]). Let f, f, be the characteristic functions of F, F,¢ M. Then

22) lim [ |f(0)—f()| du=0, for all t>0,

if and only if F,— F and the sequence F, satisfies
(2.3) lim sup sup_ (F(x+h)—F,(x—h)=0, for some h>0,
Tmoo n | x|z

Simple examples show that (2.2) is indeed sharper than f,— f; on the other hand,
(2.2) is weaker than weak convergence since (2.3) does not imply relative compact-
ness in the weak topology (for details see [6]).

Next we are going to consider infinitely divisible distribution functions. We begin
with a generalization of this notion. A function F¢M is called infinitely divisible
(inf. div.), if for every k=2, 3,... there is a function F €M such that F=F (con-
volution power). For every non-vanishing inf. div. function FeM (i e, if Féoo)>0)
we can define an inf. div. distribution function F=F/F(>). Using the well-known ca-
nonical representation of inf. div. distribution functions (Lévy-Hin¢in-canonical repre-

sentation) we may write

(2.4) log f(t)=p+iat+ [ k(t, x) dG(x), tER.

Here A(t, x)=(e"*—1 —T‘f;—,) s

moreover, G¢ M is some function (spectral function), and p, @ are certain real num-

bers. The quantities p, @, and the function G are uniquely defined by F; in particular
we have log F(<o)=p. Thus we can briefly write F=X[p; a, G].
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Next we state a vague limit theorem for inf. div. functions.

Lemma 2.3 ([6]). Let F,=# [p,; a, G, be a sequence of inf. div. functions.
Then {F,} is uniformly bounded and (2.2) holds for some non-vanishing function
FeM if and only if the following assertions are true:

(i) {G,} is uniformly bounded and satisfies (2.3);
(it) There exist real numbers p, a, and a function G¢M such that

,—a, G,—G, G(o)— pp— G(c0)—p.

In either case, F is inf. div. and adnits the representation F=X|[p; a, Q).
Finally, we introduce the concentration function Q of F¢EM by

Q(F, h)=sup (Flx + h)—F(x—h)), h=0.

It is obvious that Q(F,.)€¢ M. Further we have
QF, 0)=0, Q(F, + o0)=F(+ ).

3. Limit theorems for sums. It is noteworthy that the classical method of accom-
panying distributions due to Bavli and Gnedenko is useful also for proving vague
limit theorems for sums. We begin with notations and list some well-known facts,
see [2] and [4].

Corresponding to the triangular array {X,}, k=1, 2,..., k,, we introduce ano-
ther triangular array {X,}, k=1,2,..., k, of independent random variables, where
the random variables X, are subject to the inf. div. distribution function F,, with
characteristic function

10g £ o(t) = fus(t) €1%nk! —1 + i .
Here we set

(3.1) A= f< xdF,,(x), for fixed t>0.

k
The distribution function F, of S=h.‘_.‘-l Xu—A, is then called accompanying distribu-
tion function of F,.F, is clearly inf. div. and admits representation F,=#[0; a, H,]

with

k

v r od
(32) ay= 2 @ut | o dF))— A,
*. X 2 .
(3.3) H{x)= X [ 5w dF(y). x€R,
(3-4) F’(').(X) - Fnk(x+ank)v XER.

Now we can establish relations between F, and F‘,,.~ In this way the asymptotic
behaviour of F, can be studied by considering that of F,. We begin with the follow-
ing basic lemma:

Lemma 3.1 ((4), Lemma 11. 2.1). Suppose the condition of uniform asymptotic
negligibility of the triangular array {x,} is satisfied. Then the following assertions
are equivalent:

(i) inf Q(F,, h)>0, for some h>0;
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(ii) inf Q(F,, h)>0, for some h>0;
n
kn oo
(iii) sup ¥ [ min {1, x?} dFO(x)<co
n k=1 —oo

In all these cases the convergence

(3.5) (fut)—Fu(t)) =0, as n — oo

Is uniform on any finite interval; [t|=T.
We note that (i) and (ii) are satisfied, for instance, if F,— F+0 and F,— F=0,
respectively. Using this fact and applying Lemma 3.1, the following result is easily seen:
Theorem 3.2 ([4], proposition 11. 3.2). Suppose the condition of uniform asymp-
totic negligibility of the triangular array {X,,} is satisfied, and let F+0 be some
unction belonging to M. Then

Fp—F, n— = if and only if F‘,,‘—~ F,n-—co.

Unfortunately, it may happens that the limit function occuring in Theorem 3.2
is not inf. div.; for an example see [7]. Hence we need additional conditions guaran-
teeing that F is inf. div.

Before giving our main result (Theorem 3.5) we state and prove an improved
version of Theorem 3.2. To this end we make use of the Levy metric p, between two
distribution functions.

Theorem 3.3. Suppose that the uniform asymptotic negligibility of the trian-
gular array {X,,} is satisfied as well as the condition (iii) of Lemma 3.1 is true.
Then

p.(F,, f-‘,,)—-0, as n-—»oo,
For the proof we need )
Lemma 3.4 ([8]). Let F, G be distribution functions having the characteristic
functions f, g. Then
. 1 1
M/, 8)= sin max{fg ln’lei_(l‘rrlf(t)—g(t) b ,}
is a metric. Further, A and p, are equivalent, i. e., p/(F, G,)—0 is equivalent to
A-(fm gn)—'o
Proof of Theorem 3.3. Condition (iii) of Lemma 3.1 implies | f,()—F(£)| —0
uniformly on —7=<¢< T, T>0 fixed. Thus there exists a sequence 7, tending to in-
finity such that
x| fdt)=T )] =0,
and, as a consequence, A(f,, f,)—0. Now Lemma 3.4 yields p,(F,, F)—0 as as-
serted.
Before formulating the announced result we remind the reader of the notation
A F @, H, given in (3.1) —(3.4).
Theorem 3.5. Suppose the condition (7)[ uniform asymptotic negligibility is sa-
tisfied for the triangular array {X,). Then the characteristic functions f, of
A

S, fl Xu—A, with d. 1. F, satisfy (2.2) for some function F+0 belonging to M
R
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with characteristic function f, ir and only if the following assertions are true:
(i) The sequence {H,} is uniformly bounded and satisfies (2.3);
(ii) There exist real numbers p, a, and a function H¢M such that

a,—a, H,—H, k(o) H()—p.

In either case, F is inf. div. and admits the representation F=X [p; a, H], —oo<p
=log A)<0. /n particular, we have F,— F.
Proof. The if-part: By Lemma 2.3, (i) and (ii) imply

f \Fle)—f(a)| du —0 as n— o, for all £>0,

and moreover, F=2#[p; a, H] +0. Now it is easily seen by F =0 that relation (ii) of
Lemma 3.1 is valid. Thus we have (3.5) and obtain

(36) T 1wy =Fuw)| du—0 as n—co, for all £0,
and accordingly
t
J @) —f@)]| de—0 as n— co, for all £>0

as asserted.
The only-if part can be carried out in a similar way where (3.6) again applies.
Now we are going to introduce Levy’s canonical representation of inf. div. func-
tions FEM, F=+0. We have

_ S x__ itx
log f(f)=p+iat——- o2 +R\,‘fo, (e —1— g5 )dL(x),

where p, @, 02=0, are real numbers and L: R\{O}—.R is the Levy spectral func-
tion, i. e, L is non-decreasing and left-continuous in (—oo, 0) and (0, =), respectively.
Further, we have L(—oo)=L(c)=0 and

wdy T 0 2} dllx) <o,

Since p, a, o? L are uniquely defined by F we may briefly write F=8[p; a, p? L]
Given an inf div. function F=x#([p; a, G|¢ M we have only to put 6= G(+0)—G(0) and

2 dG(y), x<0;

[ %
L(x)= :
~J '“” dG(y), x>0.

Before formulating next result we introduce the functions

k

Y Fulx), x<0;
Lu(x)= :

S (Fula—=1), x>0,

Further we remind the reader of the notation a,, a, see (3.1) and (3.2).
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Theorem 3.6. Suppose that the uniform asymptotic negligibility condition of
the triangular array {X,,} is satisfied. Then the characteristic functions f, of
k
S,= ¥ X,.—A,~F, satisfy (2.2) for some function F¢M, F+=0, having characte-
1
ristic function f, if and only if the following assertions are satisfied:
(i) The sequence L, satisfies (2.3);
(ii) There exist real numbers p, a, o2, and a Levy spectral function L such that
a,—a,

(3.7) L(x9)—L,(x,) — L(x3) —L(x,)
for all continuity points xy, x5 of L wWith — oo <x,<xy3<0 and 0<x,<xy9< o0, res-
pectively ;

k

lim lim ¥ [ f< x’dF,,,,(x)—([ fK XdF(%))?]

=10 nooo A=l x|

=tim Bim Y[ [ <dFu0)~( [ xdFu(F]=o%

got0 A= k=l

(3.8) lim lim [ dL(x)= lim lim IerLn(x)=—p-
. x | =T =

Tooe 355, T—00 n9ewo | x

In either case, F is inf. div. and admits the representation F=2[p; a, 6%, L], —co<p
=log F()=0. /n particular, we have F,— F.

The proof of this statement is like the corresponding proof of the classical re-
sult in the case of weak convergence, where Theorem 3.5 is useful (see [2, 4]).

It is clear that (2.3) stands for an essential additional assumption guaranteeing the
representation of vague limits F¢M of S,~F, by inf. div. functions. Further, we
observe that (2.3) for [, can be rewritten in terms of random variables, namely we
have

k

(3.9) lim sup sup ¥ P(|X,—x|<h)=0 for some 2>0.

Tooo |x|22T n k=1
The condition (2.3) for £, holds true if and only if the sequence /7, possesses the
same property. It is also interesting to remark that (3.9) is sxg.mflcantly weaker than
relative compactness. To see this we quote the following assertion (see [4], Proposition
11. 3. 1):
Assuming F,— F+0 for some F¢M we have F,= F and F is non-defective if and

only if
k
(3.10) lim sup ¥ P(| Xul= T)=0.
T n k=1

It is noteworthy that the uniform asymptotic negligibility is not mentioned in this case.
Applying this result, we get: _
Corollary 3.7. Under the conditions of Theorem (3.5) the following relations
are equivalent :

(i) F, = F;
(ii) Ro)=1;
(iii) H, = H,
(iv) p=0;

(v) H, is tight, i. e., we have
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T—o0 Sgp _xT"ZT d n(t)
(vi) L, is tight, i. e, (3.10) is satisfied.
Another method which leads to the infinite divisibility of a vague limit function
F=0 is based on the one-sided tightness of /, and L, respectively (for details see [4],
section 11.3).

4. Special cases and applications. In the present section we deal with the vague
convergence of sums in a triangular array for a normal limit function. Further we
give improved versions and generalizations of results derived in [4], where the so-
called assumption of restricted convergence is applied. We adhere to the notation of
the preceding section; in particular we need

ks

Sn=.¢r11 Xnk—AnNan [ 4 (x)=Fnk(x+ank)' Ly

To begin with we state limit theorems for a normal function y=cN(u, 0®)€¢M, 0<c<1
that is, we have y=[p; i, 0% 0] with p=logc. Denoting the characteristic function
of F,, v by f. p, and specifying Theorem 3.6, we get:

Theorem 4.1. Suppose that the condition of infinite smallness of the triangular
array {X,} is satisfied, and let v be defined as above. Then

t
lim Of | fil)—o(u) du=0, for all t>0,

if and only if the following assertions are true:
k

(C8)) R e
kﬂ
(42) lim sup X P(|Xa—x|=h)=0,
n=o | x| =T k=1

for some h>0 and all T>h;

lim ¥ [ [ RdFulx)=( [ xdFy(x)P]=o?

n—oo k=1 |x|

for all €>0;

k
lim X P(|Xu|=T)=—p,forall T>O.

n—oo k=1

It is well known that (4.1) is equivalent to a@,— p provided that L=0 is true.
The relation (4.2) shows not only L=0, but also the equivalence of the above condi-
tions for o® and p with the corresponding ones given in Theorem 3.6.

Let us now introduce the set M of all non-decreasing left-continuous functions
V with 05 V(—)s V()< 1. Given a function V€M, V40, we have the unique
representation

(4.3) V=cF+d
for some d. f. F and some constants ¢, d with
0<e=V(0)=V(—)=l, 00=sd=V(—x)sl-c
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Denote by S, S, < R, the set of continuity points of V and let us consider the con-
vergence

(4.4) F(x) — V(x), n—o, forall x¢8,.
The connection between (4.4) and the vague convergence is very simple. Namely, we

have (4.4) for some V¢M if and only if F, — F for some F¢ M and, moreover, Fy(xo)>a
for a certain real number a and some x,€Sz. In either case (4.3) holds with ¢=F(0),

d=0—F(x,), F:%IF.
Next we turn to the condition of restricted convergence:
(4.5) F,(x) — V(x), n— oo, for all x¢S.

Here S stands for a fixed set with a finite limit point. Obviously, (4.5) is distinctly
weaker than (4.4). Thus it arises the following problem:
Find additional conditions such that (4.5) implies (4.4).

The rest of this section aims at deriving special results of this kind, where V is

an inf. div. function.
Theorem 4.2. Suppose that the condition of uniform asymptotic negligibility
of the triangular array {X,,} is satisfied. Assume further that (2.3) is valid for

the sequence L,. Put V=¢[p; a, o? L|+d¢M and let 6*>0. Then we have
lim F(x)=V(x), for all x¢R

if and only if the following two conditions are fulfilled :

k

(i) 8= lim lim ¥ [ x2dF(x)>0;
e=2F0 nooo k=1 |x|<e
(ii) lim F,(x)=V(x), for all x¢S,

where S is a set with a finite limit point.
In either case we have the convergence

(4.6) lim Of | ft)—(u)| du=0, ¢>0,

for the characteristic functions of F, and V.

Next we state the special case of weak convergence.

Corollary (4.3). Assume that the suppositions of Theorem 4.2 are satisfied
with V—=¢(0; a, o* L) and let 6*>0. Then (i) and (ii) imply F, =V

This statement is like proposition 11.6.1 in [4]; but in corollary 4.3 we only
assume (2.3) for L, instead of the sharper condition (3.10) used in [4].

Proof of Theorem 4.2. The only-if part is trivial to see since (i) is a well-
known relation for the normal component &=o?>0.

The if-part: Let n’ be a subsequence satisfying

lim Fo(x)=Vyx), x€Sv,

for a certain V,¢ M, By virtue of 6?>0, V is strongly increcasing and analytic in a
domain containing R, (cf. [4), proposition 7. 5. 1; V Is even an_integral function).
Now assumption (ii) leads us to Vy4=const on S. Thus we have F» —F=V;—V (—c0) 40



Vague convergence for sums of independent random variables... 193

and the suppositions of Theorem 3.6 are fulfilled. Accordingly, F=¢[po; ao o3 L,
for some real numbers p,<0, @, o2=0, and a certain spectral function L,. Further,
our assumption (i) implies 6=02>0 such that F is analytic, too. Thus V, is analytic
and we get

lim Fp(x)=Vy(x) for all x€R.

Now from (ii) we infer that Vy(x)=V(x), x¢S, and from the uniqueness theorem of
analytic functions it follows that V,=V. This tells us that V, does not depend on
the special subsequence n” and we have lim F,(x)=V/(x) for all x¢R as asserted.

Next we deal with the vague convergence of F, to a normal limit function
V=c®+d, ®=N(p, o?), assuming the condition of restricted convergence. Then it
suffices to consider a set S with four points only.

Theorem 4.4. Suppose that the condition for uniform asymptotic negligibility
of the triangular array {X,} is satisfied. Let (2.3) be satisfied for the sequence L,.
Further, define V as above and let c®*>0. Then we have

lim Fy(x)=V(x), for all x¢R,

if and only if the following two assertions are fulfilled :

(9) Ly(x9)—Ly(%,)—0, n— oo,
for all continuity points Xy, xq Of L with —co <x,<x,<0 and 0<x;<Xy< o0, res-
pectively ;

(ii) There is a set S containirzg at least four different real numbers such that
lim F(x)=W(x), x¢S.

In either case the relation (4.6) holds for the corresponding characteristic functio-
nals f,, ©.

Before proving this result we state the special case of weak convergence; then
it is enough to choose a set §’ containing at least two different points.

Corollary 45. Assume that the suppositions of Theorem 4.4 are satisfied with
V=N(p, o?) and let 6*>0. Then all assertions of Theorem 4.4 remain true replac-
ing S by §'.

Proof of Theorem 44. The only-if part is easy to see from Theorem 4.1.

The if-part: We choose a subsequence n’ satisfying

l’im Fa(x)=Vyx), X¢€Sy,
for a certain V,¢M. Moreover, since ¢>0, V is strongly increasing. In exactly the
same way as in the proof of Theorem 4.2 we may apply Theorem 3.6 so that F, —~F
=Vo—V(—0)%0, F=8[po: Mo 0 Lo) say. Our assumption (i) implies L=0, that
is, F is a normal function and, as a consequence, so is V, Noting that V is normal
by assumption and applying (ii) we get

(4.7) Vo(x) =N (o 07) (x)+do=V(x)=cN(n, o) (x)+d, x¢S.

Now it is ecasy to check the equations
C=Co d=dy, Pp=}y O=0,
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Thus V=V, and the limit function V does not depend on the choose of the special
subsequence n'. This proves

lim Fx)=V(x), x¢R,

n—o

as asserted.
Proof of Corollary 4.5. This assertion can be shown in the same way as

Theorem 4.4; instead of (4.7) we then have
V(x) =N 02) (x)=V(x)=N, o?) (x), x¢S'

so that even in this case V=V follows.
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