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ON A CLASS OF STRONGLY ACYCLIC MAPS
ZYGFRYD KUCHARSKI

1. Introduction. In this note we define a new class of multi-valued maps which
we call strongly acyclic maps (SA-maps). We show that the set of homotopy
classes of strongly acyclic maps from a compact, finite dimensional CW-complex into
the unit spherc S" in the euclidean (n+1)-dimensional space R"*! is exactly the same
as the set of homotopy classes of single-valued continuous maps. In what follows the
topological spaces are assumed to be normal and Hausdorff. IT=[0, 1] is the unit in-
terval in R.

First, we recall the definitions and some properties of multi-valued maps. Given
two spaces X and Y the symbol ¢: X—Y will stand for a multi-valued map from X
to Y such that each set @(x) is non-empty for all x¢X; the single-valued maps will
be denoted by f, g, &,.... Given ¢: XY the graph of ¢ is I'(9)={(x, y) €XXY
:y€(x). The multi-valued map ¢: X—V is called an open (closed)}-graph map
if the graph I'(¢) of ¢ is an open (closed) subset of XXY; @ is upper semi con-
tinuous (usc) if ¢(x) is compact for every x¢ X and {x¢X: ¢(x)c U} is open for
every open UcY. Assume that @: X—V is a multi-valued map such that ¥\ o(x)+ @
for every x¢X. For such a map ¢ we define ¢*: X—Y by ¢*(x)= Y\ ¢(x). The multi-
valued map ¢* is called the map conjugate with .

The following proposition is evident.

1.I. Proposition. If 9: X—VY is a closed map such that Y\9(x)+@ for
each x¢ X then the conjugate map ¢*: X—Y is an open graph map and T(¢*)=X
XYN\I(¢). A single-valued (continuous) map f: X—Y is a continuous selec-
tion for ¢: X—VY if f(x)€o(x) for all x¢X. If AcX and g: A—~Y is a single-
valued map such that g(x)€o(x) for all x¢X, then g is called a partial selection
for ¢ (A may be empty).

2. Strongly acyclic multi-valued maps. In this section we introduce a new
class of multi-valued maps which we call strongly acyclic maps

2.1. Definition. A multi-valued ¢: X—Y is called strongly acyclic(writ-
ten: SA-map) if the following conditions are satislied:

(2.1.1)  oiusc,
(21.2) Y\o(x)F@ for all xe X

(2.1.3) the homotopy groups n{Y\0(x))=0 for each x¢X and i=0, 1, 2,....

Two SA-maps ¢, y: X—Y are called SA-homotopic if there is a SA-map
%: AXTT=Y such that x(x, 0)=¢(x) and x(x, 1)=y(x) for each x¢X; x is called a
SAhomotopy between ¢ and v.

For x: XXM~Y by x,: X—V, t¢Il, we will denote the SA-map defined as
follows: y,(x)=x(x, f).

2.2. Remark. Let us observe that if ¢: X—V is a SA-map then the conjugate
map ¢*: X—Y is an open graph map and =(9*(x))=0 for each x¢.X and i=0,1,2,....
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23. Definition. Let ¢: X—Y be a SA-map. A continuous single-valued map
f: XY is called associated with ¢ if it is a selection of ¢*.

24. Theorem. Let X be a compact, finite dimensional CW-complex and Y be
a topological space. Assume that ¢: X—Y is a SA-map. Then

2.4.1) there exists a map f: X—Y which is accociated with @,
(2.4.2) if f, g: X—Y are associated with ¢, then f and g are homotopic,

(2.4.3) if ¢, y: XY are two SA-homotopic SA-maps and f, g are associated with
¢ and v respectively, then f is homotopic with g.

Proof. Let ¢: X—Y be a SA-map and let ¢* be the conjugate map. Then ¢*
satisfies all the assumptions of theorem (1.1) in [1], (comp. (2.3)), therefore there exists
a selection f for ¢* and (2.1) is proved. Moreover, (2.4.2) is an easy consequence of
theorem (1.1) in [1]. Now we prove (2.4.3). Let x: X XII—Y be an SA-homotopy bet-
ween ¢ and y and let x* be the conjugate map for x. Then x*(x, 0)=¢*(x) and
1*(x, 1)=v*(x).

Let f be associated with ¢ and g be associated with y. Then the map 4,: X
»{0,1}—~Y defined by #,(x, 0)=f(x) and k,(x, 1)=g(x) is a partial selection of x*,
so by using once again theorem (1.1) in [1] we get a map k: XXII-Y such that 4
is a selection of x* and A(x, £)=h,(x, t), for x¢ X and £=0,1. Then % is a homotopy
joining f and g. This completes the proof.

For given x¢S" we denote by £,: S™ {x}—~S"™\{x} the constant map defined
by E.(y)=—x, for each y¢ 8™\ {x}.

2.5. Lemma. For every x¢S" there exists a homotopy

Bt ST\ {x—S™\(x)
Jjoining the identity map id, over S™\{x} with the constant map E.. Moreover for
each 0<t<1 the set S" {x} is mapped homeomorphically onto its image B;(S™\{x})
by the homeomorphism B} and the map B: (S"XS"NA)XTM—S" defined by B((x, y).
£)=PB(y) is continuous. A={(x, x)} € S" X S": x¢S" —the diagonal. We omit the easy
proof of this lemma.

26. Theorem. Let X be a compact finite dimensional CW-complex and let
¢: X—S" be a SA-map. Then there is a single-valued map g: X—S" such that ¢
and g are SA-homotopic.

Proof. Let f: X—S" be the associated with ¢ (see (2.4.1)). We define g: X—8"
by setting g(x)= —f(x), for every x¢X.

Define y: X><T1—8", x(x, £)=B({ f(x)} X 0(x) < {t}) =B/ (p(x)). It is SA-homotopy
joining ¢ and g. This completes the proof.

27. Theorem. Let ¢: §"—=S" be an odd SA-map, i. e. o(—x)=—@(x) for each
X€S". Then there exist an odd single-valued map g: S"—S" such that ¢ and g are
SA-homotopic.

Proof. We consider the unit n-sphere S" as a CW-complex with standard decom-
position on the 2(n+- 1)-cells. Then we have two cells in each dimension from o to n.
Let (S")* be the l-skeleton of S". Let us observe that (S")*=S* We construct by
induction an odd map associated with ¢. Let x€(S5")°=3S° then we put fo(x) to be
an arbitrary point in ¢*(x); moreover, we define fU(—x)=—fO(x).

Assume f': 8, —+S" has been constructed for all i< k. Then by theorem (1.1) in [1],
it may be extended to a map f*: S*—S8" conjugated with (¢ \§*): 8% 8" I x¢ St we
define f*(x)= —f(—x), where §% and S* denote the upper and lower hemisphere of S*,
respectively. It completes induction; so we get an odd map f: S$"—S" which is a se-
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lector of ¢*. Then the map g(x)=—f(x) satisfies our hypotesis and the proof is com

plete.
Let X be a finite dimensional, compact CW-complex. By [X, 8] ([X, §"]5,) we

will denote the set of all homotopy classes of single-valued (SA-maps) maps from X
to §". Define a map 0: [X, §)=[X, "5 by O(f])=[f]sa for each [f]¢[X, §"]. Since
any continuous (single-valued) map is a SA-map the above definition is correct.
Now we are able to state the main result of this paper.

98. Theorem. The map 0: (X, S"|—[X, 8, is a bijection.

Proof. First let us observe that in view of theorem (2.4) we obtain that 8 is
onto. To show that 0 is an injection suppose that ([ f])=0(( g]).

It means that there exist a SA-homotopy y: XxII-8" such that y(x, 0)=f(x)
and y(x, 1)=g(x) for each x¢AX. Consider the conjugate map 1*: XxI-S" The
map ¢*: XxT1-S" The map h: Xx{0,1}+§" defined by is a partial selection of 1.

—flx) itt=g
HED=) ) ift=1

So by using theorem (1.1) in 1], we deduce that (—f) is homotopic with (—g); (by

a single-valued homotopy).
It implies that f and g are homotopic (by a single-valued homotopy).
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