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SOME RESULTS ON «-PRODUCTS OF DISTRIBUTIONS

B. FISHER, A. TAKACI

In the following, definitions 1-5 and theorems 1, 2 and 4 were originally consi-
dered using the real field. However, they hold equally well using the complex field
and we will consider them for this case.

The following definitions and theorem were given in [2].

Definition 1. Let h, be a distribution for r=0, 1,... . We say that h=|h,,

ooy b,y ... ] is a distribution vector.

If k=0 for i=1, 2,..., we write h=[hy, hy,..., k, 0,...] =[ho hy,o .., )],
and if hi=0 for i=1,2,..., we write h=[hy)=h,
The set of all distribution vectors is made into a vector space by defining the

sum and product by a scalar in the usual way.
Definition 2. Let h=|hy hy,... h,,...] be a distribution vector and let ¢ be

an arbitnary test function with compact support. We define (h, ¢) to be the se-
quence of complex numbers -

(b @)=((hor 0} (A1, @)+, (hr @), ... ).
Definition 3. Let h=[hy hy,..., h,...] be a distribution vector. We define
the derivative b’ of h by

h])

K =[o, Kssnealgsnd
Theorem 1. Let h=[hy hy, ..., h, ...] be a distribution vector and let ¢ be
an arbitrary test function with compact support. Then
(%, 9)=—~(h, )
Now let p be a fixed infinitely differentiable function having the properties
(i)  p(x)=0 for |x|=1,

(i)  p(x)=0,
(iif)  p(x)=p(—x),
(iv) jl‘ p(x)dx=1.
The function 8, is defined by 3,(x)=np(nx) for n=1, 2,... . It is obvious that

the sequence {3,} is regular and converges to the Dirac delta — function .
The scalar p, is defined for r=—1,0, 1,... by

-1/2, r=-—1,
p,= {p"0)=0, r=1,3,...,
p"(0), r=0, 2,...
The next two definitions were given in [4].
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Definition 4. Let f and g be distributions and let g,=g«5,. We say that the
a-product fag of f and g exists and is equal to the distribution wvector h=[hy, hy,

.oy h,,...] on the open interval (a, b) if

(f' g"q’)=(h0’ (P)+ 721 (hn (p)-ﬂ°+’+8n

for all test functions ¢ with compact support contained in the interval (a, b), where
—1<Rea=<0 and lim ¢,=0.

In particular, if #,=0 for r=1, 2,..., we simply say that the product fog of f

and g exists and we then write
fog=h,

on the interval (a, b).

It follows that this definition of the product fo g is equivalent to definition 4 of
the product fo g given in [1].

Definition 5. Let f and g be distributions and suppose that the a-product
fa g exists and is equal to the distribution vector h=[hy, hy, ..., h, ...] ontheopen

interval (a, b). We say that hyis the finite part of fa g and we then write

p. f. fag=h,

on the interval (a, b).

The following two theorems hold, see [2] and [4].

Theorem 2. Let f and g be distributions and suppose that the a-product
f ag and f’(.zg (or f(.1 g') exist on the open interval (a, b). Then the a-product fag

(or f gg) exists and
(fagy=fag+fag

on the interval (a, b).
Theorem 3. The O-products x, 08@ and 890 x” exist as distribution vec-

tors and
x4 08@=h(p, @)=[hd P, 9), ks(p) @), hes(ps )]

or p=0, 1,..., ¢ and q=0, 1,..., where
k(p, =(=1P7¢)p! piyde—>-), Osisq—p

8@ 0 X% =k (P, )=[ko(P: @) k(P> 9)s -+ s ko—p(P: )]

for p=0, 1,..., ¢ and ¢=0, 1,..., where
kR(pg)=(—1Y"' G )p! piy892-D, O=i=q—p.

The next theorem was proved in [4] for real numbers A, p, but the proof is
easily modified to deal with complex numbers A, p. The theorem is also rewritten
using a more convenient notation.

Theorem 4. Let A, p be complex numbers such that A, p, Re A+p)+=—1, —2,.. .,
Re (A+p)<<—1 and let s=[Re(—A—p)], a= —A—p—s—1. Then the a-product
x’;gx“_-ﬁ(k. W=[0, Ay(A, 1) ..., A\ W), where

and
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— 1Y . T(u+1) . T(h4s—i +1 ! .
A =S TR et st

fori=1,2,..., s

We now prove the following theorem.

Theorem 5. Let . be a complex number such that Relh=0, +1, +2,..., let
g be a non-negative integer such that Reh<<q and let s=[Re(—A)]+g+1, a=—h
+g—s. Then the a-products x’, a8 and 8“”0})& exist and

2 ad@=(0, hy(h gl hQy )
where

9t . T(h+s—i+1) ! ) o
M ki, q)=(_((s—)i)l.l'(s—u—i+l) -dfu"'“—‘p(‘)(u)du)& :

for i=1, 2,...,s, and

8(‘7’51x’;=[0, k(A q), ..., k(X q)],
where
k), 9)=0 for 1=i<s—q—1, and
—1 g+ . T +1) 1 S—a— s s—i
&) kO @) = () S mgmry - f PO
for s—g<i=<s.

Proof. Suppose first of all that ReA>>—1. Then for arbitrary test function with
compact support

(o, 800 = | PEP(x)0x)dx=

1n 1 s=1 4ie (0)
= [ ot pna)o(x)dx = [ i wp @) B o du
i} i=0 nt.i!
s—1 (_l)lnq-—l—l 1
te={Z [ e e} (30, o)+,
i=0 i!

B i (_Al)"f""‘“. 1 M5 p(@ (u)du(56—D, @)+€
= Z — (é—l')!— J’ u P ’ n

s 1\aH ekl _i 1
= L ey | T pduEeh, @)+,

where lim €,=0. Equation (1) follows for ReA>—1 and i=1,..., s.

n—s00

Now assume that equation (1) holds for —p—1<ReA<—p and i=1,..., s. This
is certainly true when p=0. Then with —p—I<<ReA<l—p we have using theorem 2

A 8@ = ok a 8@) —x% ad@th =[0, hy(A, )~k g+ 1), K@) =R g+ 1),
—h:{»l(k-q'*'l)]'

where :

, (=D T (A+s—i+1) —a—i+1 (s +1 1) —

B @ —hi O g+ 1) =M TR G —ani T2 J"’ Hpe+(u)du.dt-+V = Mhi(A—1,9)

for i=1,..., s and
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—1 g+s+1 T +1 1
e 0+ D)= L g @<, 1, )

Equation (1) follows now by induction, since we got it for —p—2<ReA<c—p—1
and i=1,..., s+1.

We will suppose that ReA> —1 and put (&% )a=x% #8,(x)=: c,(x), so that
€O(0)=(— 1y nt . [LurpO(u)da.
Then

(39, (x%),0)=(—1). E(f?)-v:"’w) - 9=(0) = 50 (Rl f wrp\(u)du(36@, @)

5 i pia_ TOAD . ‘
= q — i pi—A LI At S—i (5) (g—iy
! (i)( D™ s vnmien § WP @dn (3979, 9)

— - q —_ +1 ya+i I‘(k+l) i S—a— S| s—i
- ig_q(s_,.)( D e ey e P (30, 9)
and equation (2) follows for ReA>—1 and i=1, 2,..., s.

Now assume that equation (2) holds for —p—1<<ReA<<—p and i=1,..., s. This
is certainly true when p=0. Then with —p—1<Rei<<—p we have using theorem 2

M@ a T =@ axiy =80 axt = (0,..., 0, £_ (\ §)—k,—qo(h g+ 1. .., k(b q)

—k, (A g +1), — ke g+ =1[0,...0, ky_gyy (A—1, @) ..., kyy(A—1, )]

and equations (2) follow for —p—2<RerA<<—p—1 and i=1,..., s+1. The result
follows by induction. This completes the proof of the theorem.

The next definition was given in [3].

Definition 6. Let fi be a distribution depending on a complex parameter .
Then [ is said to be an analytic function of » on a domain D if (f» 9) is analy-
tic on D for all test functions ¢ with compact support. If D is the whole complex
plane, then f is said to be an entire function of L. If fr=[fyM) fuA)s -~y foA),.. ]
is a distribution vector and f/) is an analytic fanction of % on a domain D for
r=0,1,..., then fi is said to be an analytic vector function of % on D. If f(X)is

an entire function of » for r=0, 1,..., then [i is said to be an entire vector func-
tion of A o
We now define the distributions /% by
2 |
fi=3*D for A=—1, —2,..., and f} = o) for A+=—1, —2,..., and the dis-

tributions f* by
2 (x)=f}(—x).

Then f’; and j’_‘_ are entire functions of &, see [5].
Theorem 6. Let A, p be complex numbers such that Rep=+—1, —2,...,
Rep< —1 and let s=[Re(—n)], a=—p—s—1. Then the a-product fit.xf[-’- of the

entire functions f% and f'~* exists as a distribution vector and
f.); ?f‘:‘—;.:’g()‘i l‘)-——lo- gl(xv P)» LR ) gs(lo p)]v

where g(h, W) is an entire vector function of A and
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—1) . T +s—i+1 !
@) 80 W= {5 L ar ) TO &0 P

for i=1,.
Proof Wlth A H—A==—1, —2,..., we have by theorem 4 that the a-product
f afr exists and
A H—A

X -
frafitt= I‘(k:—l) ¢ gy =10 & K)o & W),

where

hh u=1) (=) T(hts—i—1) b eal(s —
&0 W= mn) ta ) = Lo Ty Toma—iny & POdnse

for i=1,..., s. Equation (3) follows for &, p—As—1, —2,....
Using theorem 5 with p—A=—1, —2, —g—1 and A¥—1, —2,..., we have
A

fhaf=i =t a (= 1@ =(0, £, g, fulb D)
where

_ (=) q) (—1)i . T +s—i+1) b emamin(s ) — o,
O D="ra31," =G=nire—a—itn). TaTD '{” N u)dufdt=0=g(hA—q—1)

for i=1,..., s and equation (3) follows for A#—1, —2,... and p—A=—1, —2,..
Replacing x by —x in the second part of theorem 5, we have

8@ axt =(—1)*[0, —ky(h @)ooy (=R A 9) oo (= 1YR(A @I

It follows that with A=—1, —2,..., —g¢—1, and p—As—1, —2,...,
xu+q+l
fio-ta frtati= S(q)ar( o =[0, L,(w, @) ..., L1 9)]
where

(=) kfutq+1. 9) =1y 9\ [ ys—a-tpls -
Ln, q9)= T(n+q+2) {I‘(s a—i+1) (S—i)J o ol )(u)du}S( "

(=) . T+s—i+]) PP L
={=hTe—aivnroF J’" IpW(u)dufdt-H=g(—q—1, B)

for i=s—¢q,..., s and
l(w ¢)=0=g(—q—1, n)
for i=1, ..., s—g—1. Equation (3) follows for p—Af—1, —2,..., A=—1,--2,...
We have therefore proved that f} a f“— =g, n) for Reu:t:—l —2,. and

Re p<<— 1. Since E(—}"’}.’Wf;'l) n (A+)) for 1= i< s—1, respectively 1 for i=s, it

follows that g(l p) is an entire functlon of A. This completes the proof of the theorem.
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