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ESTIMATES ON THE INITIAL TRACE FOR THE SOLUTIONS
OF THE FILTRATION EQUATION

A. A. FABRICANT, M. L. MARINOV, TS. V. RANGELOV

Necessary condition for the existence of solution of the Cauchy problem with increasing initial data
is obtained for the filtration equation of unsteady type.

I. Introduction. The purpose of this paper is to study nonnegative, continuous
weak solutions of the equation

(L1) u,=Aop(u)

in the strip S;=R¥X (0, T)], where the function ¢ is monotonly increasing and ¢(0)=0l
For such solutions we prove the existence and uniqueness of a nonnegative Bore.
measure p on R4 such that

(12) lim [ u(x, On(x)dx= [ n(x)u(dx)
NGO R R4

for all functions n¢C,(R9).

Moreover, we establish an estimate on the growth of p which is a necessary con-
dition for the existence of the solution of Cauchy problem for the equation (1.1).

The existence and uniqueness of the initial trace for the equation (1.1) was stu-
died by W. Widder in [1] and by D. Aronson in [2] for ¢(s)=s, and for nonli-
near case, when ¢(s)=s", m>1by D. Aronson and L. Caffarelli in [3] and by
M. Ughi in [4] for ¢ close to s™ In the work of A. Kalashnikov [5]ford=1 and
recently by Ph. Benilan, M. Crandall and M. Pierre in [6] for d>1 is shown
that the necessary condition from [3] is also sufficient for the existence of solution
of (L.1).

This paper is inspired from the work of D. Aronson and L.Caffarelli [3]
and we extend their results for nonpower ¢ which satisfy some usual conditions.

2. Main result. In this work we deal with the functions ¢ in the equation (1.1)
which satisfies the following conditions:

(HI) { o(s) € CARND), 9'(5)>0 for s+0
0(0)=9'0)=0, s9"(5)=0
(H2) Z'?'i#) dicon e R

[ There exist a monotonly decreasing function FL) and
a constant a¢(0, 1) such that

(H3) as [ S dnz [ R0z 0
$9°(s) + 20'(s)

for every s>0.
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Define the function y such that o= [¥® s~1¢’(s)ds and denote by y~! the func-
tion inverse for .

Definition. The function u is a weak solution of (1.1) in Sy if u is nonne-
gative, continuous and for every 1), T, 0<t,<t,<<T is fulfilled

I (e(w)Ax +u -,‘:Tx)dxdt= [ () [dx
Rd X (T4 Ta) Rd 2

where 1 €c*(Sy) and suppy(-,t) is compact for every te€(t,, T

Denote by B,(x;) the ball {x¢ R?; | x—x,|=r} and by | B,(x,)| its volume.

Our main result is the next: v

Theorem 2.1. Let u be a nonnegative, continuous weak solution of (1.1) in Sy,
for some T>0 and the function ¢ satisfy conditions (H1)—(H3). Then there exists a
unique, nonnegative Borel mesure p in K? and (1.2) is fulfilled for every n ¢ Cy(RY).
Moreover, the next estimate takes place

1

&b BT L, M09 = OVl ™ v e DI+ )

for every x,€R? r¢R, where the constant C depends only on ¢, d and does not
depend on u.
Examples.
l. For ¢(s)==s", m>1 we obtain the main result of [3] and a=(m—1)/(m— 1 +(2/d)).
2. For ¢(s)=s”+57, 1<p<q the conditions of [3] are not fulfilled, but we take
the theorem 2.1 with
a=(g—1)/(g—1+2/d)

and the estimate (2.1) is as in [4].

3. When o(s)=s?In(1+s), p>(d—2)/2, d>3 the conditions in [4] are not fulfilled,
but the theorem 2.1 takes place with a=p?/(v+ 1)(p—1+2/d).

The proof of the theorem 2.1 is based on the next fundamental properties of the
solution of (1.1) which have also some independent sense: estimations on the exten-
tion of initial mass and regularizing effect for the solutions of (1.1). We use these pro-
perties to prove a Harnak-type inequaluty from which the result follows immediately. The
main tool for the provement are different comparison principles for the solutions of
(1.1) as in [3]).

3. Auxiliary notices. Here we state some of the properties of the boundary value
problem for the equation (1.1) which will be used in the proofs in the next sections. Some
of the statements are fulfilled for equation (1.1) as well as in the case ¢(s)=s" and
their proofs are similar to that of [3, 7, 8, 14].

Note that the next definitions and lemmas are fulfilled in cilinder ['=Q>x(0, T,
where Q is a domain in R4 with smooth boundary, but for simplicity we shall deal
with the case when Q is a ball. For arbitrary £¢R? r¢ R, and 1, 1, such that
0<t,<<ty~ T'denote I',=T,(&; t,, 1)~ BAE) < (1), Ty and O, =T, \T,

Let f(x, f) be continuous function for x¢ R4, t=0 and g(x, f) is continuous nonne-
gative function on dI', then consider the boundary value problem

(3.1) u,=Ap(u)+ f(x, t) in T,
(3.2) u(x, t)=g(x, t) on Jr,.

Through this section we assume that the function ¢ satisfy (HI).
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Definition. The function u is a weak solution of (3.1), (3.2) if
(i) weC([t, wls LYAB)NLAT,)

(33) (i) g (o)Ax+u 25y dxdt:f ) ! o(8) & dsdt+ a{ (gn) (2 dx— rf frdxdt

tor every function L €CY(T,) N C2(1,) and %=0 on 0B,X[1, 1], where d/ov denotes
fhe exterior normal derivative,

(iii) w(x, £)=0 on T,

For solutions of (3.1) there is an a priori comparison principle. In the case
o(s)=s", m>1, f(x, t)==0, d=1, this was established in [8], and the proof is as in [14].
Lemma 3.1. Let u, i=1, 2 are two weak solutions of (3.1), (3.2) with data &

and f,, i=1, 2, such that g =g, a. e.on or, fi=fy» a. e in T,. Then uy=u,,
a. e.inT,.
Proof. From the inequality (3.3) for the functions u, i=1, 2 we get

(7 ([00) — O] At + g —ta] G dxdt= [ (o, o)t )i, )x

r

+ ';f o; [o(g) — ¢ (2] %5‘ dxdt — Bf [g1(x, T)—&alx, TIU(X, )X

—fr [ [f(x, £)—falx, t)xdxdt.

Then for every test function x(x, f) such that x=0 on T, and 0dy/ov=0 on
0B, (1,, Ty] is fulfilled

(3.4) J b e, e[S {[06)— o)) 1+ b, £) 9%} dxat

where b(x, t)=uy(x, t)—uy(x, ?).
Since u,¢L=(T,), then there exists a constant C,>0 such that |u(x, £)|=C, for
i=1, 2 and (x, t)€I,\y and the measure of the set y is zero. Denote by D the set

{(x, £): uy(x, O)—uy(x, £)+0}.
Let

o(uy(x, 1) —o(uyx, £))
a e hum o (% f)eD

o' (uy(x, 1)) for (x, £)€I,\D.
Hence a¢ L=(T',) and || all.<M. We can find a sequence {a,};_, such that

a(x, t)=

(i)  alx, )+k ' =ay(x, )sM+ET,
(i) ay(x, HeC=(T,),
(iii) (ay(x, O)—a(x, O)Nayx, £)~"? =0 in LXT).

Fix an arbitrary function %(x), such that #(x)=0, %(x)€C3(B,), and let w, be the
solution of the boundary value problem
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W+ ay(x, HAw,=0 in T,
(3.5) Wy (x, T9)=x(x) for x¢B,
wy(x, £)=0 for (x, £)€0B,X[ty, T).

From [9] it follows the existence and the uniqueness of the solution w,(x, £) of
the problem (3. 5) and w,¢€ C=(T,).
From the maximum principle it follows that

(3.6) 0=wy(x, £)= max w(x).
x¢ B'

If x,€0B" and v is exterior normal to dB, at x, then Owy(x, £)/0v=—Ilimeo4+ (Wi(x,
—ev, £)—wy(x, t))/e hence

(3.7) ow,(x,, t)/ov=0.
From (3.6), (3.7) it follows that w,(x, t) are test functions and (3.4) is fulfilled

(3.8) . [ b(x, T)w(x, 1)) dx < jl: [ b(x, t)[a(x, t)Aw, +%] dxdt
= {f b(x, t)a(x, t)—ay(x, t))Awdxdt<{ {f b3(x, £)a, (x, £)(Aw,)? dxdt . {_ f O i dt)'?

Let us estimate the integral

ow
'[ [ aye, Y AwyPdxdt = —[[ Aw, "t dxdt = [[ w, 2 (Awdxdt
v "1 ow, 2 — 2
+ [ wilx, DAw(x, t)dx ey = [ fw, A d"'dxdt_ﬁfl T <@(x, 7)) | dx+3f|\/,w,(x,t,))| dx
1!' rr N »

T2 ow, ow
g‘[f Aw, 6* dedt — [ [ 50 5t dSdt+ [ |7.x(x) Pdx:

Hence
2 { [ax(x, t)(Awy(x, )dxdt < J’ | 7 %(x) Pdx.

Since u, are bounded on I', then there exists a constant M such that [b(x, f{)P<M
on I', and

(3.9) f!’ [ b%(x, t)a,(x, t)(Aw,)’dxdtsA% [ | 7.x(x)) [Mdx.
From (3.8), (3.9) and initial condition for w,(x, £) it follows

J bk S (M [ |70 P y G gy,

Letting k—co we obtain f, b(x, 19)%(x)dx=0. From the choice of %(x) we conclude
that u,(x, t9)—iy(x, 13)=0, 2.e. on B,. But if u is a solution of (3.1), u(x, £)=g(x, )
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on O, then u is a solution of the mixed problem with the same data on the smaller
domain B,X(t;, t3] for 1,<13<<7,. Lemma 3.1 is proved.

Remark 3.1. It follows from lemma 3.1 that the boundary value problem (3.1),
(3.2) have no more than one weak solution.

The next lemma is proved in a similar way as in [8, 10, 13].

Lemma 3.2. Let g¢C(dT,), g=0,T,=T,0; 0, 7), then the boundary value problem
{v,=A<p(v) inT,

(3.10) ox, t)=g on OT,

has unique weak solution.
Proof. Consider the functions w(x, {)=0(v(x, 1)), wy(x, £)=0(g(x, £)) and de-
note A=supor (w@,)+ 1. Then the problem (3.10) changes into

w, =o' (0 (w(x, H))Aw inT,
{ w(x, t)=wyx, ) on oI,

First we construct approximate solutions of (3.11). Let {wo,(x, t)};°=, is a sequence
of function with next properties:

() wo,€C™(R™)
(b) -—:’ —<wo(x, )=<A

(3.11)

(c) o = Wo2= ...and lim wy,(x, £)=w(x, )
p—oo

(d) sup {| vwo,(x, £)|*}=k where k doesn’t depend on p.
r

The construction is as in [15]. We fix the sequence of .functions {a,(s)}>, such that

a)(s)=0'(07X(s)) if s€[1/2p, A+1], a,(s)¢ [o'(e7X(1/2p+ 1)), @'(A+2)] if s¢[1/2p, A+1])
a,€C=(R), a,(s)=0, lim,_,.. a,;(s)=0. From [9] it follows that there exists a unique solu-

tion w”(x, ) of the problem
{ wh—a,(w’(x, t))Aw’=0 in T,
wP(x, £)=wWop(x, t) on drI’,

and w” ¢ HH#+8 1482 (T), 0<P<1, dw’jox;0t€ LXT,), j=1,..., d. Applying the compa-
rison principle for the nondegenerate parabolic problems we get

lpswi(x, )= A
w?(x, H)=w"*\(x, f) for every p and every (x, £)¢T,.

From (3.12) and (3.13) it follows that @” is a solution of the equation (3.11) and func-
tion u”=¢~'(w”) is a solution of the problem

{ uf—Ap(u”)=0 inT,
uP(x, t)=@ Y wo,(x, £)) on dr,,

Moreover, from the monotony of ' and (3.13) it follows

(3.12)

(3.13)

(3.14)

(3.15) cp"'(;—:q— )y<uH(x, sw(x, )< 9~YA) on T,.
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Now we estimate the gradient of ¢(x”). Multiplying equation in (3. 14) by ¢(«”) and
integrating by parts we have

do(u )

0= [J 1~ o) o) dxdt=— _ [ o@)*(= ds +ff[(,, Fwr)+ |7 0(u?) P dxdt

S X[0, T
r

= [[| 7.0 (&) Pdxdt+ [ Fu)[ldx— [ (P(u,,)a%(,{ ) s
T 8, S X0, T) v

r

where F(c)= [5¢(h)d). Hence
(3.16) rff | V. 0u?)2dxdt=|B, Flo=(A)+T|S,|K.A.

Fix arbitrary p and denote so= 279~ (1/p), G(s) = [5 (¢’ (»))"?dA. Multiplying equa-
tion (3.14) by de(u”)/ot and integrating on I'(t, f)=B,X (1, t) we get

o= 11, {10 (@))% 12— A o(ur)ydxat

aG(u”),, do(u”) do(u”
= Gy | v Pdxdt— [ 060 s

r(z,¢) S, xIr,

Hence for 0<t</<T it is fulfilled

I (=

I'(t, #)

0(‘(14)

Y dxdt+- Bf | 7. 0(u?(x, t) 2dx

<717 , y on,,()o(u)d
=g [l s S

If we use this equality for t=0 and every £¢(0, 7] then we obtain

(3.17) max { ff(d(l(u )

2 dxdt, sup ﬂ[|v,<p(u”) [fdx}=C,
te0.118, B,
where C, depends only on K, A, r and ¢. From the monotony of ¢'(s) it follows that

u u 0G(u
(d‘”( ))9 (cp’(u"’)ddt ) =¢'(97Y(A)) [(p’(u”)'/~ ot J"‘P (e~(AN( ;t ))'

Then from (3.16), (3.17) we obtain [[|grad ¢(u”)[?dxdt<C where C= |B,| F(97Y(A))
r

+T|S —1(A)).

From (3.15) it follows that for every (x, £)¢I’, we may define the function
u(x, t)=lim,. u?(x, {) and 0u(x, £)=¢ (A).

We show that « (x, f) is a weak solution of (3.10). Indeed, from the Lebegue
theorem it follows that w” »u in I'¥T,), o(u’)—e(u) in LAT,), u’(x, t,)—u(x, t,) in
L*(B,) for fixed £,¢(0, T]. Let x¢C"(I',) 1 C*(T',). Multiplying equation (3.14) by
x(x, t) x==0 on dB,x(0, T| and integrating by parts we obtain

[ w06, ) 5+ oAt)dxdt = [ u(x, Thu(x, T)dx
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- ox
_ Bf o (wo,p (%, 0)) % (x, 0)dx+ er{o' . O(wo,p(X, 1)) 5y ds.

Letting p—co we get

lj_' [{u(x, t)% +o(u)Ax} dxdt= B{ u(x, Tx(x, Tdx

ox
_ , 1) S ds.
B{ &(x, Ox(x, 0)dx+ S’X[fo . g(x, t) 5, ds

Hence (i) from (3.3) is fulfilled. Now to verify (i) we consider the function @”(.,?):
[0, T]—L%(B,) such that w?”¢L%0, T; L¥B,)) and ow’/ot¢ L0, T; L*B,). Then w”
is absolutely continuous and w”(f) =w”(0)+ [50w’(-, s)/0sds.

Hence for every 1, ¢, O=t<t<T we have w”(f)—w” (1)= [T (0w”/0f)(-, s)ds and
from [16]

t 2. ¢
w0~ () sy < f 1226220 v ds=[ ([ Cop- (3 s)Pd)2ds

4
="l J (o%p)“’ dxds]'? =(t='?[[[ (o—‘g:;)’dxdt]‘ﬂ <C(t—1)'"
Hence by the theorem of Artsela it follows that there exists subsequence p, and a func-
tion w(x, £)¢CO, T; L2(B,) such that w**(x, t)»w(x, t) in CO, T; L¥B,), then
wP(x, t)—w(x, t) in L¥T,) and from above we obtain w(x, £)=0(u(x, ¢)) in I', and
o (w")—»o N (w) in C0, T; L¥B,)) and o (w)€C(0, T; L¥B,).

Lemma 3.2 is proved.

Now we propose that for ¢ is fulfilled not only (H1) but also (H2). Then the
weak solutions of (3.1), (3.2) has the finite speed of propagation property [7]. We
shall use this property at the domain {(x, ¢), r;<<|x|<ry T, =f=7,}. The proof of next
lemma is the same as in [7, 11].

Lemma 33. Let u(x, t) be a continuous weak solution of the problem (3.1),
(3.2) with f=0 supp g(x, 0)=B, and g(x, £)==0 on S, %[0, T). Then supp u(x, t)=Bry
where

(@) =rol 1+ 20y~ (1) ¢/r)'"| and L=sup g(x;, ).

Proof. Denote w(s)=o(w(s)), then w'(s)=0'(W(s)W'(s)=0"(¥(s)) W(s)/9'(W(s)) = W($)
w'(s)=y'(s). Now fix arbitrary point x'¢ B,\B,. We shall find such a point te(0, T
for which u(x, £)==0 for £¢(0, ¢'). :

Fix s¢(—co, 0) such that sx'¢ B, and for 1€ (0, T] let a(ty)=(y"(!)to)"% To find
sufficient conditions for u(x!, 1,)=0 we set co=vw({)/a(t,), Ag=a(t)+r,+|sx'| and
define the function

w(&) for £>0
0 for E<0

where E(x, £)=C2—C,|x—sx'|+C,A, It is clear that the function u(x, #)has the pro.
perties 7€ RN\ 0)n €0 (R%') and u, — A (#)=Cow(E) d—1/| x—sx'|. Hence if we

i(x, t)=w([§1+)={
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set f(x, O)=W(E)s Cold—1)/| x—sx'|then s, — Ag |&)=F for &+0 and |x—sx!|>0
Then 2(x, t) is a weak solution of the problem
{:T,—Aw(ﬂ)=7 in T,
u(x, 0)=y(C[A;— | x—sx"|]3)
Let us apply lemma 3.1 for u(x, £) and u(x,¢). Since f-0, then we must compare the
initial data
u(x, 0)=w(Co[Ag—|x—sx[])=w(Co[Ap— | x [—|sx[]})

W(Coa(ty))=L for | x|=r,
:\V(CO [a(ro)‘*'ro“l X l ]+) \*{ 0 o for Ix |>f:

Hence u(x, 0)=g(x, 0) for x¢ B, and from Lemma 3.1 we obtain u(x, f)<u(x, £), then
1(x, £)=0 for g(x, £)=0. Therefore it is sufficient to have &(x%, 1,)=0, i. e. (y~'({)/a(t,))7,
+a(ty)+ro+|sx'|=(1—s)| x'| and hence if 20y~ ()1,)"?+ry=|x1| then u(x', 75)=0.

Lemma 3.3 is proved.

Remark 3.2. Let A(x)€¢C,(RY), h=0, u¢C(S;), u=0. Denote by v/(x, f) the uni-
que weak solution of the problem

{ 'Z"=A(P('U) in rr:BrX(rl' 12]
v(x, t)= h(x)u(x, t) on oI,

where O<t,<1,<T.

Then there exists a constant R*>(), which depends only on A(x), suph( ) {h(x)u(x, 8)},

x ( supp A(x

o,such that supp v,(-, )= Bps for £€[1, Ty and r=R*. Indeed, denote by /, = sup {A(x)u(x, t):
xesupp h(x), te(0, T}

ro=inf{r: supp A(x)=B,} and R*=r,[1+2(y ‘(l)jrf)"-’]
0

and consider the problem (3.1)), (3.2) for arbitrary fixed r>R* From Lemma 3'1 and
Remark 3.1 it follows that there exists unique weak solution v/(x, £), then we apply
Lemma 3.3.

4. Properties of the Cauchy problem. Denote by S(t, 7) the strip {(x, £) ¢ R+,
O<t<t<T}. We consider the Cauchy problem

(4.1) u,=Ao(u) in S(t, 7)
(4.2) { u(x, 1)=u(x) in R4

where the function ¢ satisfy (H1).
Definition. The function u(x, t) is a weak solution of the problem (4.1),
(4.2) if the next conditions are fulfilled

(i) weC(r, T; L\(RMH)NL=(S(x, T)),

@iy ff [a g} + o(u)Ayldxdt= [ u(x, Ty(x, T)dx— [ u{x)(x, t)dx
S(r, ) Rd Rd

(4.3)

where ¥ € C*(S(r, T)) and supp x(-, t) is compact for every t,
(ili) w(x, £)=0.



The solutions of the filtration equation 253

Definition. /f the set |J:¢w rysuppu(-, £) is bounded in R? we say that the
weak solution of the problem (4.1), (4.2) has compact support.

Theorem 4.1. Let u(x, t) be continuous in Sy and is a weak solution of (4.1)
and let g(x) is continuous function with compact support. Suppose that for some
1€(0, T) is fulfilled g(x)=u(x, 1), x¢R? and if w is a weak solution with compact
suppport of the problem (4.1), (4.2) with w(x, t)=g(x), then w(x, \)=u(x, t) in S(t, T).

P roof.Denotel,=sup,{g(x)}, ro=inf{r; supp glx)=B,} and r, = ro[1 + 2(y='(L,) T/r2)'*].
For arbitrary r>r, let ©(x, £) is a weak solution of the boundary value problem

v,=A@(7) inI'(0; 7, T;r)
(4.4) g o(x, 1)=g(x) on B,
v(x, 1)=0 in dB,X(t, T).

It follows from Lemma 3.2 and Remark 3.1, that such a solution exists and is uni-
que, and from Lemma 3.3, that for every #¢(r, T is fulfilled
(4.5) supp v (-, )= B,,.
Then for sufficiently large r we have

y _{ v,(x, t) for (x, £)eT(0; 7, 75 r)
wx, £)= 0 for (x, £)€S(t, TNI'(0; 1, T: 7).

Now as in [3] is proved that function z is a weak solution of the boundary value
problem
46 { v, =A@(v) inT0, t, T;r)
(46) wx, t)y=u(x, t) on or(0: , T; r).
Then we apply Lemma 3.1 and obtain the Theorem 4.1.

The next theorem shows that the estimate on the finite speed of propagation de-

pend as a matter of fact on the initial mass of the solution. Denote J,(u)=ﬁ [ udx.
el 8

Theorem 42. Let u is continuous weak solution of (4.1) Sy and (H1), (H2)
are fulfilled. Then if suppu(-, 0)=B, and 8>1 is arbitrary, for every t we have

supp (-, t)= B, n where
(.7 r(t)=ro(2+8) [1+((¢/rv=" (134, (o))"}

Proof. Fix arbitrary point (x, £)€ S, \I(©0; 0, T; 7,(2+8)) and >1. Let
r=|x°|—2r,. For every point x'¢B, we define the plane

M(x0, x)={x€RY, (x, x!—x0)=(27(x"+x1), (x'—X,))}.
Then dist {IT(x°, x'), (0)}=27"(| x°|—| x' ) =7
Hence x' and suppu(-, 0) are in the same half space with respect to TI(x’, x"),
Moreover, x° is the reflection of x! in TI(x?, x'). Define v(x, t)=u(x, £) for £€(0, T]
where x is reflection of x with respect to I(x° x'), then o(y, £) =u(y, t) for
YEN(x°, x') and v(x, 0) = u(x, 0)<u (x, 0) for x in the same half space with supp u(x, 0)

with respect to I(x°, x'). Then applying Lemma 3.1 we obtain that u(x°, t9)=u(x', ),
Since x'¢ B, is an arbitrary point, then

u(x’, )< ilsz u(x', t°).
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Now for the solutions with compact support we have that the total mass is conserved
and hence
Bf u(x, 0ydx= [ u(x, t°)dx:28f u(x, t%dx = inf w(x',)|B,|
R x’ ¢ B,

r d r
0

Then for every (x,, £°)€S8/I(0; 0, T; r,(2+38)) is fulfilled
(4.8) u(x®, L)y=(r’/ry*| B, | J u(x, 0)dx=(1/8%)J, (u)-

r
0

It follows from Lemma 3.3 that there exists R,<<Tco such that
U suppu(-, £)=Bp. Set Ry=max{R,, r,(2+8)+2 [y~ (1/8%)/, (uo) T)]'?}.

te(o, 1)
Then we apply Lemma 3.3 for the function « in the domain I'(0; 0, 7, Ro)\I'(0; O,
T; ry(2+496)) with {=(1/8)J, (4o) and using (4.8) the theorem 4.2 is proved.

Now for the continuous weak solutions of the problem (4.1), (4.2) we established
some pointwise estimates of such solutions, using conditions (H1)), (H2), (H3). To obtain
a regularizing effect for solutions of (4.1), (4.2) we follow [12].

Theorem 43. Let uis a continuous weak solution of (4.1), (4.2) and (H1),
(H2), (H3) are fulfilled. If B(s)eCN[t, T)) is such a function that B(¢t)=1, P(T)=0,
then for every x,€ R, r>0 is fulfilled

(4.9) tov(x, £)<Tv(xy T)+4~"| x—x,[* /r saBY(s)dss

here v=vy'(u).
Proof. First we obtain as in [12] a regularizing effect. For €0 let wis a clas-
sical solution of the problem

{w,—Aq»(w):O in Sy
w(x, 0)=ux)+e in R4

Then vy =g(v)Av: + | 70|’ where v,=y ' (w) g(v.) =9 (v(ve)) and w,=wAv,
+ (¢’ (w)/w)| Vw2 The function p=Av, satisfy p, = g(va)Ap + 2(V (V) + V) Vp
+ g"(ve) | 7 Pp + (&'(ve) + (2/d))p?== #(p) where we use the inequality A|v. [*=(2/d)
(AT + 27 7.7 (Ay).

Let A(v,)>0 and for z=—h(v.)/t we have z,< %(z). Since p,=%(p) and z=<p
for small ¢ then z<p for every £=0 which follows from the comparison principles
of [9). For arbitrary function A(s) we calculate z,—2(z) with z= —h(v.)/t

v, |

2 " n!
2= y’(z)+[n(:r,) —(&'(we) + -2 +[(gh)" +H' ] ——

If
(gh)' +h' =0

L— =g + Z, h=>0 for s=>0

(4.10)
then we can apply a comparison principle for p=Aw, and z= —h(v)/t.

The solution of inequalities (4.10) where g(s)=@'(y(s))=w(s)/V'(s) is A(s)=(y(s)
©'(W(s)) 1 X [; Flo)w(o)do with F from (H3). So
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tAT, > —( v:f)’ FOo’ (M) w(s)e'(w(s))

and using (H3) we obtain

v(ve)

(4.11) tAv=—( [ F(Me'(:)dh)w(T)e' (W(ze)-

Now we get the expression

s

wW(S) = s9ve( X, + B(s)x—x,), §)+471 x—x,[? 0{ c“B'?(c)do

where B(s)€C! is arbitrary function. Then

d d
99— 4591 D 5905+ 59'(5) T et (= Xo) +47 | x— o [* sB(s)
1 ]

d
= 05"+ s%Q(Y(T)NAVe + 57 T[4 5TBI(8) 2 Tae (o7 —Xop) + 47| X0 BH(s)

V(vs) d

=50 aze—(W@) ! [ FR)e' (a5 2 (v 27— X0 o) )

1
v(@) v(®)
From (H3) we have ay(v,) [ o¢'(A)/Adh= [ F)9'(A)dh and hence avey(ve)
0 0
©)
=[00F FOe' (M
Then dw/ds>0 which means that w is nondecreasing function on s and then
w(t)<w(T) for 0<t<T. We choose B(s) such that B(f)=1, B(T)=0. Then (4.9) is
obtained, for v, and letting ¢—0 the theorem 4.3 is proved.
In the next theorem we study the properties of the continuous weak solutions in

S; with compact support.
Theorem 4.4. Let ¢ satisfy (H1)—(H3), and u is continuous weak solution of

(4.1), (4.2) in S; with suppu(-, 0)=B, (x,) and 8>1. Then
(4.12) L () S CY(T )= [y (alxe )] +rYT)

where C depends only on ¢, d, and doesn’t depend on u.

Proof. From (4.9) we obtain for | x—x,| =p,u(x, )sw(t—T v(x, T) +°p%4
X [T s*B'¥(s)ds).

Integrating over | x—x,|=p, then

v (Uo(u(x, 1)< Tet- oy~ Y(u(xe T))+E=p?4 [T s'B"*(s)ds.

Let B(s) =(T—s)(T—¢), then [] s°B’%(s)ds = T*/(T—t). From Theorem 4.2 we have
that there exists a function r(¢)€C([0, 7]), such that suppu(-, )< B (X,). Then for
p=r(t) we obtain

v (Uno@) =t [ Toy(u(xo T)+471r%8) ,fr sp"(s)ds ).

Using [ (odx= [8 (v, udx we get
"o "e)
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IBI (*"o)f

- ri(t)
(4-13) YU,
)

0 - Tye

G P () =) W@ (o T) + 7]
(¢

Now consider two cases:

(i) w1 4, (1) =27

(i) w157, () >2rYT.
In the first case the estimate (4.12) is fulfilled. In the second case set tszrg/w*l((l/&’)],o(uo))
then £,-7/2 and T—¢5 -T/2 so r2(ts)/ 4T —ts)=r’(2(2+38))2/2T.
From (4.13) we obtain

Vo224 8) S () = [T/ [/ w =" (1/8%, (o)) [w— (" (xo, T))+rA(22-+8)P/2T).

From the condition (H3) it follows that for B¢(0, 1) there exists A3>0 such that
v PO/ W) = Ap for all L€ Ry, hence with B,=387/(2(2+8))? we have

W8T, (o)) = [1/Ap (T/r)w N xor T))+rY(2(2+8))%/ 2T} 11—

and we obtain (4.12). Theorem 4.4 is proved.
5. Proof of Theorem 2.1. First we shall show that if # is a continuous weak so-

lution of (4.1), (4.2) in Sy then the estimate (4.12) take place. From Theorem 4.4 it is
clear for solutions with compact initial data. Set the function k.(x)¢ C(R9), and

1, |x|=r,
R PN
and let w*(x, £) is a solution of the problem
wE=Ap(w*) in S

{ w(x, 0)=he(x)u(x, 0) in R4
Then suppwi(x, 0)=B, 4.. From Theorem 4.1 it follows that u(x, £)=w%x, f) in
Sr. From Theorem 4.4 for @* we have the estimate (4.12)

Brvel ™ @ o) dx =G [(TI(ro+ )0 (=, YO + (7o +EWYT].
ro-{-b:

Letting e—~0 we obtain the estimate (4.12) for u.
Now for every t¢(0, 7] we have

Jr(a(x, )= Cy[((T—1)/rgy "= W u(xo, T—1))]V0=) 4 r2)(T —7)]

where C is independent of t.
Then there exists a sequence T, such that lim'”_’0 fk x(x)u(x, t,,)dx=fR x(x)n(dx)
d

for every x € Co(R?) and p satisfy the estimate @
Byt ] W)= CUT )™= (v~ (u (o THI= 473/ T,

"o

The prove of uniqueness of p is the same as in the case ¢(s)=s™ in [3]. Indeed,
by Theorem 4.4 for ¢£¢(0, 7/2) we have
(5.1) J a(x, )dx = Cy[(T/2) = [y w0, T/2))]"/ =)+ 1/T].
)

Ill(n
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Since u(x, t)==0, assume that [8,0 u(x, t)dx+0, now for each s¢ (0, 7/4) and arbitrary
small n€ Ry set p=[p () u(x, s)dx—n. From Theorem 4.1 and Theorem 4.2 it follows
that there exists t€ R, such that

[ u(x, t+s)dx= [ u(x, s)dx—n
146 a0
for all ¢, which satisfy 0<f<min(7/4, 1).
Suppose that u# converges weakly to a mesure p, along the sequence {el} and to
a mesure j, along a sequence {e2}. Then take the limit of both sides of (5.1) as &,—0,

setting ¢ fix and since « is continuous we find
J o 45 dxz 1 (B4(0))—n.

1+e

Now set f=e¢? and when £]—0 we get py(Bi4+¢(0))=p(B8,(0))—n. Since ¢ and n are
arbitrary we conclude that py(B,(0))=u,(8,(0)). On the other side, taking the limit with
t=¢2, followed by the limit with #=¢) we obtain p,(B8,(0)) =ny(B,(0)). Therefore p,(B,(0))
=y(B,(0)). This will be done on every ball in R4 so that p,=p,. The theorem 2.1 is
proved.

The main results of this paper have been published without proof in [17].
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