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ON THE WEAK POLYNOMIAL IDENTITIES
LYUBOV A. VLADIMIROVA

This paper deals with weak polynomial identities satisfied by pairs “associative algebras — vector
spaces” over a field of characteristic zero. Two main results are obtained here: i) Necessary and suffi-
cient conditions for distributivity of the lattice of subvarieties of a given variety of pairs are found ;
ii) In the case when the vector space has the structure of a Lie algebra, we prove an analog of the

Nagata-Higman theorem : if a pair satisfies the weak identity x"=0 then it salisfies x; . .. X, =0 for
a suitable M as well.

Introduction. Throughout this paper we shall work over a fixed field K of charac-
teristic zero. Let A=K(X)=K(x,, X, ...) be the free associative algebra with free
generators x;, X, ... and let A, be the subalgebra of rank m generated by x,, x,...x,,.
We denote S, and GL,, to be the symmetric group and the general linear group acting
respectively on the set of symbols {1, 2,..., 7} and on the m-dimensional vector space.
Let R be an associative algebra and let G be a vector subspace of R such that R is
generated as an algebra by G. The polynomial f(x,,..., x,) from K(X) is a weak
identity for the pair (R, G)if flg,,..., g)=0 for any g, g..., g,¢G. The set T
of all weak identities for (R, G) is an ideal in K(X).

The ideal T satisfies the following condition: if f(x,,..., x,)¢7 then f(Xa,x,
vouy Ya,x)€T for ay€K. In other words T is GL-invariant and we shall call it a
GL-ideal in K(X) corresponding to the pair (R, G). It is well known that the free Lie
algebra L(X) is embedded into K(X) in a natural way. In particular, when the vector
space (G is a Lie algebra, the ideal 7 of all weak identities for the pair (R, G) satis-
fies the condition: if f(x,, ..., x,)€7T and v,, vy, ..., v,€L(X)then f(v,..., v, )€T
again. The weak identities are introduced in this form by Razmysloy (8] in his
study of the 22 matrix algebra.

Let / be a subset of K(X). The class of all pairs (R, G) satisfying as weak iden-
tities the elements of / forms a variety of pairs. A lot of the properties of varieties
of algebras can be transferred verbatim to varieties of pairs. For example all subva-
rieties of a given variety of pairs form a lattice with respect to intersection and union,

Now let 9 be the variety of pairs with an ideal of weak identities /. We denote
A/l by AM) and A,/(A, (1) by F,(M) and we shall call AM) relatively free algebra
for the variety . Let P, (M) be the set of all multilinear polynomials from F, () of
degree n. The space P,(M) has the structure of a left §,-module with the following

action of §,:
(’(X/l cee Xy )= Xo(i) e Xoli )+ 6ES, Xipoon Xy € Pr(M).

The algebra A,, is isomorphic to the tensor algebra of a vector space of dimension m.
Thus F,(M) is a left GL,-module with the action

B(xi, - xi )= R0x,) oo g% ) 8EGLpy Xy - X; € F ().

The irreducible S,- and GL,-modules are described by Young diagrams. For any par-
tition A=(A,, ..., A,) of the integer n, we shall denote M(1) and N,(2) to be the S,-
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and GL,-modules corresponding to A. It is known [4], that the homogeneous compo-
nent F(M) of F,(M) and P,(M) have the same module structures : if P (M)=Zk(A)M(%)

then F(M)=Zk(A)N,(r). We shall denote the standart identity Si(xy, ..., Xz)
= 3(—1)°Xs01) - - - Xoxr We refer to [1, 2, 4, 12] as a background for the symmetric
and general linear group theory and its application to the polynomial identities.

Next we state the first result of this paper in the following

Theorem 1. Let M be a wvariety of pairs over a field of characteristic zero.
The lattice of subvarieties of W is distributive if and only if W satisfies the weak
identity

(1) alx, yly+Bylx, y]=0
for suitable o, B€K, such that (a, B)==0, 0).

Remark. This result is analogous to that of A. Ananin, A. Kemer [1], for
varieties of associative algebras. But if one compares the description of P,I) in both
cases, one can see that the lattice of subvarieties in the case of pairs is more com-
plicated. We recall that the Engel identity is y(adx)"=[y, x, x,..., x]=0 and the
identity dy(xy, ..y Xpo Yirov o Vao1)=2—1)Xo01) Y1 Xc2) Vg - - - Ve—1Xo() is known as the
Capelli identity. )

A. Kostrikin [6] proved that a Lie algebra satisfying the Engel identity is
locally nilpotent. S. Mishchenko [7] proved that a Lie algebra with the Engel con-
dition satisfying a Capelli identity of a special form is nilpotent. E. Zelmanov [5]
has generalized the previous results and proved that any Lie algebra satisfying the
Engel identity is nilpotent. We make use of Zelmanov’s result in order to prove the
following analog of the Nagata-Higman theorem [11, 13].

Theorem 2. Let W be the wvariety of pairs “associative algebras — Liealgeb-
ras” defined by x"=0. Then W satisfies the weak Lie identity x,...xy=0 for a
suitable N.

Proof of Theorem 1. It is known that the distributivity of the lattice of sub-
varieties of the variety I is equivalent to the distributivity of the lattice of S,-sub-
modules in P,(M). Therefore, we just have to find necessary and sufficient conditions
for P,(IM) to be a sum of non-isomorfic irreducible §,-submodules for every n=1.
The S,-module P, of the multilinear polynomials in the freeassociative algebra is iso-
morphic to the group algebra KS, and P,= Z(dim M(L)).M(A). The least n with
dim M(A)>1 for a given A is n=3, when dim M(2, 1)=2. Hence, a necessary condi-
tion for the distributivity of the lattice is the existence of an identity, which “glues”
both isomorphic modules M(2,1). Such an identity is (1).In order to prove the theorem
it sufficeg to establish that the identity (1) implies the condition P(M)=ZIM(A) for
any n=3.

Denote the variety of pairs determined by the weak identity (1) by . We shall
examine three different cases:

a) ap(a—pP)a+P)+0 or a=0 (respectively B=0);

b) a—p=0;

¢) a+P=0.

Proposition 1.1. Let ap(a—PB)a+B)+0 or B=0, a40 (respectively a=0, B+0).
Then P, (M) X; s M(n—t, 1°).

The proof of the Proposition follows from Lemma 1.2 and Lemma 1.3.

Lemma 1.2. If the conditions of Proposition 1.1 are satisfied, then the multi-
plicity of the S,-submodule M(n—t, 19), gstsn—l in P(M) does not exceed 1.

Proof. First we shall prove that in the GL-ideal of I there exists an element
of the form
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x“dy(x, ¥, 25 x"2, X)) X" —A(ay, . . ., 0)Ss(x, ¥, 2)x" Tl

Let us write the identity (1) in the form
@) xlx, yl=blx, ylx, b=— L, (a0).

By linearization we obtain the identity
) x[z, yl+2lx, y]=b(x, ylz+[z, y]x).

If we multiply (3) from the left (respectively from the right) by #, summation
over all permutations of ¢, x, y with an alternative change of the signs gives

(2+ b)Y, +(1— b)zy—(1 —2b)zz =0
(2+ by + (1 — bYtz—(1 +26)a, =0

Here we denote u,=xSy(x, ¥, 2), uy=ds(x, ¥, z; x, 1), uz=dy(x, y, z; 1, x), u,=Sy(x,
¥, 2)x.
We add to this system the obvious identity for the freeassociative algebra
u;—uy+u;—u,=0. Since its rank equals 3, the u,s can be expressed by one of them.
The proof will be completed when we notice that by the identities (2) and (3)
we can express any generator of the irreducible S,-module

M(m, 1*7)m=Za;+1), x0dy(Xy, -, Xp3 X0 . .0, Xi—1)x &

as a multiple of Sy(x;, ..., x)xp1,

Lemma 1.3. Assume that the conditions of Proposition 1.1 hold and let M(L),
A=Ay, ..., Ay) be an irreducible S,-module with LAy==2. Then M(L) has multiplicity 0
in P,(M).

Proof. For n=4 the only modules M(A) with A,=2 are 2M(2?). They are gene-
rated by the linearizations of the elements [x, y|? and x[x, y]ly—y[x, y]x=0b[x, y]?
(from (2)). But if 6++1 we have the identity [x, y]*=0. Hence the generators of
2M(2?) are in the GL-ideal of 9.

We shall use induction on n. We assume that P,_,(M)=Zp-) M(n—1—*k, 1%). By
the Littlewood — Richardson rule we obtain that P,() is a submodule of (P,_,(M)
OM(1)) t S, =Zr—12M(n—k, 1DEx M(n—k—1, 2, 1*71),

Therefore, it suffices to prove that the generators of the modules M(n—k—1, 2,
1#-1), 0=k=n—1, are in the GL-ideal of M.

In general, the generator of the irreducible GL,-module N(n—k—1, 2, 1*7') have
the following form:

a u’ u' a,
(4) z x:'Od;.(xl, ey X x‘,", oy X X XXt x 'ty
ofS,

- x‘:/—l' x‘:/ xo(g)x:’/' x:l/+l. R x"k_l) x“k.
As an obvious consequence of (2) we have the identity
X2y =(b+1)xyx—byx®

Hence it suffices to prove the statement for the elements (4) only in the case
a,<<1, /=0,..., k. Now we use the following identity obtained from (3):

(2+b)x[z, y]+(1—b)ds(z, 5 X)—(2b+ 1)z, ¥]x=0.
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That gives us the possibility to provide induction on the total degree of x,. First, let
us denote

h=[x V1S t, 0), t=dy(z b, u; [x, ] 1)
vy=xdyz, t, u; y, 1)—ydyz, ¢ u; x, 1)
Vy=xdy(z, t, u; 1, y)—ydyz, ¢, u; 1, x)
V3=x83(2, t, u)y—ySs(2, t, u)x
uy=dyz, t, u; x, y)—dy(z, t, u; y, x)
uy=dy(z, t, u; x, 1)—ds(z, t,u; y, x
ug=ds(z, ¢, u; 1, [x, y])
uy=dy(z, t, u; 1, x)y—dyz, ¢, u; 1, y)x
uy==si(z, t, u)x, y.
From (2) and (3) we get the following system of identities :
2+ b)ty+ (1 —b)zy,—(14-2b)uy=0
2+ b)v, +(1—b)v,— (1 +2b)v3=0
2+ b)uy+ (1 —b)uy—(1+2b)u; =0
Q2+b6)t,+(1—b)v,—(1+2b)vg=0
2+ b)yv3+(1—b)uyg—(1+2b)u, =0
(2+b)yvg+(1—b)uy—(1+2b)ug=0
2+ bz +(1—b)u,—(142b)uz=0
(2+b)ag+(1—b)a,—(1+2b)ty =0
2+ b)t,+(1—=b)v,—(1+2b)t,=0
2ug+2t, —tg+ vy +u,—vy=0
g — 2y — g+l + 1ty —lly =0

and obtain
2634762 —14b—13
Uy = —%b,)— uy= Ay,
2624 13b+9
5) Uy = = greny L= Ao
b2 410647
» = =) W= Agtty

(the cases b= +1 are considered separately).
Let us linearize the third identity from (5). We denote v,(x, y, z; £)=dy(x, y, 2; 1, £).
Then we have the identity

lo(x, 3, 25 O+t ¥, 2; X)=Ay(S(x, y, )+ Se(t, ¥, 2)x).
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Permuting x, y, 2, f we write two other identities
(Y, 2, x5 H+olt, 2, x; ¥)=AS(¥, 2, )+ Sy(¢, 2, x)y)
v(2, x, V5 +v(t, x, ¥ 2)=As(Ss(z, x, Y+ Si(t, x, ¥)2).
Then we add the identity for K(X):
Sux ¥z, O=vy(x, ¥, 2; D=1 (Y, 2, £; X)+vi(2, £ x5 Y)—,(t X, ¥; 2)
=85(x, ¥, 2)t—=S83(y, 2, t)x+Ss(z, ¢, x)y—S3(¢, x, y)z.
By summation of the obtained identities and after some calculations we establish

dyx, ¥, 25 1, )= [BAs+D)S(x, ¥, )t +(A— 1Sy, 2, H)x

+(As+ DSi(2, ¢, x)y+(A4—DS3(t x, y)z].

Similarly we obtain analogous identities for the elements £Sy(x, y, 2z) and d(x, y,
z; ¢, 1). Hence using only multiplications from the left and from the right and permu-
tations of the variables we can establish the following identities:

X8u(xy, - o0, X)) =BeSi(xy, e Xp)Xy
Ay ooy X Looo, Lox Lo, D=BS,(xy, .0, X%y, i=1,..., k=1,
I

The last two identities are inferred from [x, y]*=0. If b1, —1/2, —2, then the homo-
geneous system has only the trivial solution. The cases b= —1/2, —2 are symmetric,
so we shall consider only one of them, 6=—2. We obtain from the system

Uy=—Up=U=—Uz=—Ug=—1y
V)= —Vy=03=—1;=0.
We replace t=x, u=y, and add the identity from K(X)
[, YISs(x, ¥, 2)—[xdy(x, ¥, 25 y, D)—yds(x, y, 25 %, 1]
+xdfx, v, 2 1, Y)—ydy(x, v, z; 1, x)|—[xSs(x, ¥, 2)y—ySs(x, ¥, 2)x]

to the system. We again establish that the generators of the module M(22, 1) are in
the GL-ideal of M. Next, by linearization and calculations similar to those in the
proof of Lemma 1.2 we see that

b =ty =0 = Uy =Uy=U,=Ug= U=, = Uy =0.
Using only multiplications from the left and from the right we obtain the identities:
T odyfxy, ooy X Lo, Xotyyerny Xog(pee-y 1)=0, 12i<jsk—1.
1 1

ofS, ! !

This completes the proof of the Lemma 1.3.
In order to complete the proof of Theorem | we make use of two other results.
In the case when a=f V. Drensky and P. Koshlukov [9] proved that the

following equality holds
PADY) = £ M)

for the variety of pairs MM with GL-ideal generated by the identity [x? y]=0.



On the weak polynomial identities 263

In the case when a+B=0 the weak identity (1) is equivalent to [x, y, z]=0.

Here we use the result of . Volichenko [3] who proved that for weak Lie iden-
tities the corresponding variety has a distributive lattice of subvarieties. We can apply
that result to our case because the identity [x, y, z]=0 gives the same consequences
in both cases.

It is clear that the Engel identity [y, X, ..., x]=y(adx)*'=0 follows as a weak

T
identity from x"=0.

By the Zelmanov theorem there exists P such that [xy, ..., xp]=0 is a Lie con-
sequence of y(adx)*'. Without loss of generality we can assume that P=2%. Then
we shall prove that x, ... x,=0, where N=nM.

Proof of Theorem 2. Obviously the weak Lie identities [[yy ..., Yoesls
[Voest1s--+» Vall=0, 1=k<n—1 follow from the identity [y,..., y,]=0.

Let us denote M,=2% M,=2%—.Then it follows from [x;,..., X, ]=0 that

Ay, 22 ]=0, where M) is a commutator of length i We shall denote the complete
“1 “
linearization of x" by Z,=h,( V..., ¥,)=2Vsq) - - - Yo(n Next we establish 0=h,,(xg,);

M) =n! M‘l'); e M Let us assume that we can get the weak identity kﬁ,’l ces lg;:’=o

from x"=0. We shall prove next that A(}) e Az +t)=0. Denote A,,l_1=H:"=2X5{;:.

i+
Now our inductive assumption is written in the form A() A,_,=0. Here we use again
i
the fact mentioned in the beginning of the proof. Then [A(}) , A 1]A,,i_,=0.
i+1 i+
Now it follo ws

0=hyAY) .oy MO YA iy =n! AD AR Ay,
i+1 i+1 i i+1

+1 +

If we proceed in the same way with the other commutators of A, _, we shall finally
get the desired result. Then the proof of the Theorem follows for i=N.
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