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BOUNDS FOR THE PROBABILISTIC CHARACTERISTICS
OF LATENT FAILURE TIMES WITHIN COMPETING RISKS FRAMEWORK

S. T. RACHEV, A. YU. YAKOVLEV

A survival model of two dependent competing risks is discussed. Bounds are given for crude sur-
vival probabilities when marginal distributions of the latent times Ty, T, and the distribution of the
value T-min ([, T,) are fixed. The bounds obtained have been used for interval estimation of the
probabilities pr (7;>7T,) and pr (Io>Ty) for complete aad censored samples resulting from studying
the survival of animals after combined injuries.

1. Introduction, The most common approach to constructing a competing risks
model (R. L. Prentice et al, 1978) is based on introducing unobserved values —
the latent failure times T, ..., T,— corresponding to each type of failure i=1,...,n
under n possible causes of failure. In other words, it is assumed that each cause i
induces the latent time T, i=1,..., n. The latent times T,..., Ty induced by all
the causes operative form a system of nonnegative mutually dependent random varia-
bles with the arbitrary joint distribution Wi(t,,,.., t)=pr (T1\=t, ..., T,=t,). The
observed life length T of the subject is assumed to be equal to min (7,,..., T,).
The distribution function A(¢)=pr (T<t) of the value T=min(Ty,..., T,) and the
corresponding survial function F(¢)=1—F(¢) are detined for £¢[0, =) and F0)=0.

In works on the theory of competing risks it is generally assumed that failure is,
eventually, due to just one of the n causes, and a pair of the observed values (7,J),
where J=(j: T;j<T, k=1,...,n) are recorded for each subject. Joint distribution
of the values (T, /) is given by the so-called crude survival functions

(M Qt)=pr {(T; > 1), /Di (T; > T}

Obviously F(f)=X7-1Q,¢). Corresponding to marginal distribution functions for latent
failure times F, (f)=pr(T,<t), t=0, are the functions F(#)=pr(T,>f)which are some"
times referred to as net survial functions. N. Langberg et al [8] analyzed a
more complex model structure and sample observations associated with it which admits
of a situa‘ion when the failure of different types may coincide in time.

It is generally recongized that the principal applied problem of the theory of
competing risks consists in obtaining net, i. e. marginal, survival functions from ob-
servation of the pair of variables (7,/). Formulated in such general terms, the pro-
blem appears to be nonidentifiable (A. Peterson[I1]; A. Tsiatis [17]; R. Pren-
tice et al. [13]). Attempts are usually made to overcome this difficulty either with
the aid of the hypothesis of the independence of the random variables Tpoosy i g
or by means of specifying a parametric form of their joint distribution W(t,,. .., t,).
N. Langberg [9] succeeded in slackening somewhat the requirement on the inde-
pendence of latent times in the course of identification of marginal distributions, their
results, however, fall far short of solving the problem exhaustively.

On the other hand, A. Peterson [12] constructed the following boundaries for

the marginal survival functions F(t) at fixed Q(f):
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(2) )= F ()= Q) +{1—Q0)}.

and showed that these bounds are sharp in the sense of the existence ef cases which
demonstrate the possibility of their attainment. By replacing in inequality (2) the func-
tions F(¢) and Q. (¢) with their empirical estimators, A. Peterson [12] obtained con-
sistent nonparametric bounds for F(£). In their study E. Slud and L. Rubinstein
[16] considered certain nonparametric assumptions permitting construction, at n=2,
of bounds of marginal survival which can be much narrower than those of Peter-
son [12].

In the present paper we are considering the inverse problem, that of constructing
bounds for Q(¢) and some other characteristics of the model at fixed marginal distri-
bution F(t), i=1,..., n and the distribution F(¢) of the value 7=min (T, ..., T)).
One of the most relevant biological fields for the application of the problem is ana-
lysis of the survival of organisms after combined injuries. Such applications are dis-
cussed in Section 4.

2. Preliminary results and notation. The bounds for joint distribution at fixed
marginal distributions were studied by W. Hoeffding [6] and M. Fréchet [3].
In what follows we shall repeatedly use bounds of the kind

N
3) max {0, X F(x)—N+1} = W(x, ..., x,)= min{F(x)),..., Fy(xy}h

i1
which came to be known in the literature as the Frechet bounds (J. Galambos
[4, Chapter 5)).

For any one-dimensional random variables X’ and X"’ with the distribution func-
tions " and F’ respectively, the distance in total variation is defined as

(4) o(F', F""y=sup{|pr(X' € A)—pr (X" €¢A)|: Ac=Z}

where % is the Borel oc-algebra in R In particular, if X’ and X"’ are the discrete
random variables with the same support {x,, x5, ...}, then (4) takes the form
‘4 l u\, | !’ ]
o(F, F')=5 X |pr(X =x)—pr(X"=x))|
I,,
For any A—2 it may be written

pr(XeA)=pr(XeA, X=Y)+pr(X€A X+Y)=pr(YecA)+pr(X£Y),
whence, allowing for symmetry considerations, we have
(5) pr (X'+X")=o(F, F").

It follows from the Dobrushin theorem [1] that there exist dependent random varia-
bles X’ and X”" such that

pr (X' HX") =o (F', F"),

and in this sense (5) is a sharp estimator.
As regards the distance o (F’, F’), it is known that

(6) o(F', F"Y=p(F,F"),
where p(F’, F”) is the uniform metric, i. e.,

p(F, F")=sup{| F'(x)—F"(x)|: x¢R'}.
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3. Bounds for crude survival probabilities. Introduce the class 7, of all the
joint distributions WAf,, ..., £,) with the fixed distributions Fy(¢), i=1,..., n, and F(f).

The lower and upper bounds for the functions Q,(#), i=1,..., n are given by the fol-
lowing theorem.

Theorem. For any t=0,i=1,...,n, n=2 and Wit, ..., )T, there exist
inequalities

Q(t)=max { ¥ o(F;, F)—n+2—F(t), 0},
J¥t

Q.(t)=1—max o (F, F), max n;, max F?)},
JF k n

where m,;=pr (T,=T)). B
Proof. Let us evaluate from below the function Q,(¢) using relations (3) and (5):

Qty=pr (in (T;#T), T;>t)=pr {IQ‘_ (T,+T)}—pr {/QK(T/# 7). Ti=t}
= pr{ () (T} =minfpr { (| (Ty=T)} pr (Ty=h)=max [pr{ ) (T/+T)=F(0). 0]
~ max {j‘:‘l pr (T;%T)—n+2—F(t), 0}>max {,-fi o(F;, F)—n+2—F(t), 0.
The upper bound follows from the chain of inequalities:

QUO=pr {0, (TAT), (| (Tu>0)=min [pr { (| (TAT), pr{ () (T:>0)

Thus the theorem is proved. One generalization of this theorem is given in Appendix’
Hereinafter we shall consider the case of n=2. It should be pointed out that all.
the arguments are readily applicable to any 7.
Thus, according to the theorem we have for all £=0 at W(¢,, £,) ¢ T, inequalities

Q) max {o (Fy, F)—Fy(t), 0}= Q\(t)=1—max [F\(¢). Fyt). o(Fy, F), 7,5

max { o(Fy, F)—Fy(f), 0}= Qy(t)<1—max [F\(¢), FAt), o(Fy F), m;a).

where my,=pr (7,=T,).

It is not difficult to construct examples showing that for certain F,, F, and F
the bounds in (7) are sharp.

Note that IT;=pr(7,>T,) and My=pr(7,>T,) are probabilities of failures of
the first and second types, respectively. Assuming that in (7) £=0, we have

(8) o(Fy F)=Th=1—o(Fy, F)—my,
o(F, F)= < 1—o(Fy, F)—my,.
Following directly from (7) and (6) are the bounds
p(Fap F=Th=1—p(F, F)—my
p(F, F)=TNg=s1—p (Fy, F)—n,q

which will be used in Section 4 for constructing confidence intervals for the proba.
bilities IT; and IT,.

9)
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As to covariancc between latent failure times in the case WA¢,, £,)€.7, the si-
milar consideration leads to the following bounds for the value E(7,7T,):

o y - B . . ~
E(NTy) - [ min (Fx), Fa(y), Fy). Fio—Fi(v)dxdy

£ [ min {F(), F(0, Fo+ Fo )~ Fyo) dxdy

0 y

E(T\Ty) = J j max { F( ), Fi(x)+Fo ¥)—1, F(x)+Fy y)— Fo(x)} dxdy

T max {F(x), Fo(x)+ Bl y)— 1, F(y)+ F(x)—Fy( y)} dxdy.
0 y

4. Applications. A model of combined injury and confidence intervals for
the probabilities I1, and Il,. One of the most topical problems of survial data sta-
tistical analysis in the cases of combined injuries is evaluation of the contribution of
each of the effecting factors to the lethal effect of their joint action. The difficulties
involved in its solution are, apparently, duc to the presence of competing risks, each
capable of causing death in combined injury, and to the impossibility of establishing
the exact cause of death in any given experiment. The following experimental situa-
tion is typical for biological investigation of lethal effects of combined injury
(O. Messerschmidt [10]).

3 groups of animals are studied of which two are under observation for the ef-
fects of the isolated action of each of two injurious agents A and B, respectively,
while the third group consists of animals exposed to the combined action of both
agents A and B, the doses used being the same as those chosen for the first two
groups. The life lengths of the animals of the first two groups have the distribution
functions A ,(¢) and FHp(t), respectively. The fact that the joint distribution W(¢,, £5) of
the latent times 7', and Ty belongs to the class 7, implies the acceptance of the fol-
lowing hypotheses:

(i) the distribution function Fy(#) of the latent time 7, induced by the cause A
coincides with F7,(f), whereas the distribution function F, (f) of the latent time T,
induced by cause B coincides with Fg#);

(ii) in the cause of combined injury, i. e. when both causes A and B are opera-
tive, the life length 7=min (7T, 7,) is observed with the distribution function F(¢),
where 7, and T, are dependent random variables with the joint distribution WAZ,, £,).

The hypotheses (i) and (ii) may seem restrictive, yet it is difficult to define the
actual fields of their application which in reality may well prove to be fairly extens-
ive. In the next section we shall outline some ways of relaxing the hypotheses (i)
and (ii), but now we accept them as an indispensable stage in statistical estimation
of the probabilities I1, and I1,, which characterize the contribution of each agent to
the combined injurious effect. In other words, the model formulated in terms of the
propositions (i) and (ii) substantiates in this particular case the observability of the
marginal distributions F(f) and Fy(¢) essential for constructing corresponding statistical
estimators. We shall further assume the functions F\(f), Fy(t).and F(¢) to be absolu-
tely continuous.

Let us turn again to inequalities (9). Assume that F.‘"’(t). F5O(t), F™(f) are empi-
rical counterparts of the distribution functions F(¢), Fy(f), F(f) constructed by use of
complete samples of the sizes n, k£ m, respectively.

Consider the first of inequalities (9), setting m,=0,

Using the triangle inequality, we nave
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(10) M, =p (FY, F™)—p(FY", F)—p(F", F).
From inequalities (3) it follows that
(11) pr{p(F, Fy)=cyN p(F™, F)<c} > max { G*¥(cy)+G"(c)—1,0},

where G*)(x) and G'™(x) are the Kolmogorov distributions for finite samples of the
sizes £ and m, respectively, C, and C being positive constants.
Hence, on the basis of (10) and (11), the lower confidence bound is

(12) pr{ll,=p (F", F™)—cq—c}= max {G*(c,)+ G™(c)—1,0}.

Similar reasoning makes it possible to obtain from (9) the upper confidence bound
as well

(13) pr{M,<1—p(F"”, F™)+c, +c} = max {G"(c,)+G"™(c)—1, 0}.

The confidence bounds for Il, are symmetric in respect to (12) and (13). Using
(3), one may joint the estimators obtained and form two-sided confidence limits but
at the expense of a reduction in values of confidence probabilities. Taking into ac-
count the arbitrary choice of constants C, C,, C,, it is reasonable to rewrite the bo-
unds (12) and (13) in the following form:

(14)  pr{I,=p(FL", F)—cy—c} > max {sup[G#Y(ca—h)+G™(c+h)—1], 0}
h
(15)  pr{N,=1—p(F\”, Fm)+c,+c} > max { sup [G™(c,—h)+G™(c+h)—1], O}.
h

Confidence bounds (14), (15) were constructed for complete samples. In the case
of censored observations asymptotic confidence bands may be obtained. Let us con-
sider a scheme of random independent censorship on the right, assuming continuity
of the distribution functions of both life length and censoring time. Let S{"(f) and
St (t) be the Karlan—Meier estimators for survival functions F\(f) and Fy({), respec-
tively. Then let

to=inf{£=0: ®(f)=1}=
for every distribution function ®(¢).

Following the ideas of W. Hall and J. Wellner [5], within the interval of
time ¢ [0, t,] such that t,<< min(tr, 1) introduce the statistics,

where
e (@, @)= sup |®(H)—d"(t)],
tE[0, 1)
o= sup Z{"(f), v™= sup L"(f).
£E[0, %) £6[0. %)

Introducing the similar notations S7"(f) and V3"(f), for the sample form the dis-
tribution Fy(f), for the values £¢[0, 1), t,<- min (1, Tz), we can now give the final
representation of the confidence bounds for I, and Iy as min (n, k, m)— o

pr{ M, =r(SE", S™)—1y00" —hv(™} = max {Ga(hg)+ Gu(1)—1, 0}
pri{I, < 1—r. (S, §™)+1,0{" + 0™} = max {G,,(r)+ G,(A)—1, 0}

pr{My= r(S{", $")—1o{” —Avim}= max { Ga(r,)+Gu(A)—1, 0}



330 S. T. Rachev, A. Yu. Yakovlev

pr{ My 1 —r (S5, S™)+21y05" +hvim} = max {Ga,(r5) + Go(M)—1, 0},
where all the estimators are considered at 0-=£<t, t=min (1, Ty).

Example. Shown in Fig. 1 are the patterns of empirical counterparts of survival
functions F,(f), Fy(t) and F(¢t) . These patterns correspond to synergism in the action
of two damaging agents: Fi£:<<F,(t)F,(t). Using data from Fig. 1, the following con-
fidence bounds for the values I1, and I1, were obtained:

pr (I, -0.25) =0.9, pr(M1,=0.74)-09;
pr (M, -0.27) 0.9,  pr (M= 0.75)= 0.9.

These bounds seem to be too broad for practical purposes. So the example shows
that either the hypothesis: W/(,, £,)¢ 7, is to be enriched by additional a priori infor-
mmation, or further search for some (more useful for statistical inference than crude
survival probabilitics) other characteristics of the contribution of each damaging agent
to the combined injurious effect would be necessary. One such attempt will be pre-
sented in the subsequent communication.

L

=

11

‘t_—l—— FO ()
Tk

L\_\_\ﬂ_‘—\_—

[E— )]

0 —

{

Fig. 1. Empirical counterparts F{™ (¢), F¥ (¢), F"™ () for the survival functions

F\(t), Fu(t), F(t) constructed by use of censored observations.
See text (Example) for explanations!

To take the model more realistic it seems reasonable to replace the hypothesis
(i) with the following one: )

(17) Hy(O=vi(t),  Hgt)=ws(t),
where
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v,(6)=lim pr (T, >1| Ty>A), wy(t) = lim pr(Ty>t| T, >A).
A—oo A0

There exist joint distributions for which conditional survival functions v,(¢) and

v,(t) do coincide with marginal F,(f) and Fy(f). This is the case for the following
functional family of distributions:

(18) W(t,, tg) =W(t,, ) [1, e(Q)+ Fi(t)Folts) {1 — ()},

where W/(¢,, ¢,) is the arbitrary joint survival function and /,..(Q)is the step function
such that

I:,, o(Q)=1, max (¢, £,)<<Q; /i, (Q)=0, max (¢, ({,)=Q.

Using the family (18) allows the above results concerning interval estimation of IT;
and 1I, to remain valid under the new condition (17), which seems biologically more
natural than hypothesis (i.)

Appendix. Distances between the random variables 7', 7, and 7. Let us in-
troduce in the space of one-dimensional distributions the metrics /, and m, as follows:

sup | [f(x)d®,(x)— [ f(x)dDy(x) |, @ €(0,1]

(A1) L(®, D)= )
(107 @0, (@) e, ag]l, )

sup { [ f(x)d®y(x)+ [ g(x)dy(x)}, a€(0, 1]

(A2) M(®y, ®g)=
([ 107 @—07'(1—)|da}'e, e[l o),

where the upper bound in (Al) is taken over the space Lip(u) of all measurable func-

tions f(x), for which |f(x)—f(¥)| = |x—y|= x, v€R'; the functions f and g in (A2)

satisfy the inequality f(x)+g(y)=|x—y|, x and y¢R'; @' and ®;' in expressions

(A1) and (A2) are inverse functions in respect to @, and ®,. Next we shall introduce

the average distance from 7; to T

(A3) LTy N)={E(| T,—T |*)}*,
where
0<a<<oo, o' =min(l,1/a), i=1,2.

Holding for distance (A3) is the following statement.
For any finite a=0 there are the inequalities

l(F\, F)= £.(Ty, T)= mF, F)

(Ad)

l(Fy F)= 2Ty, T)= my(Fy, F),
where [, and m, are defined by expressions (Al) and (A2). Bounds (A4) are sharp
in the class .

Proof. For 0<a=<1 the lower bound in (A4) follows from the Kantorovich
theorem (sec review: Rachev, 1984a) and the upper one from Rachev’s results
(1984b). When 1< a <o inequalities (A4) are deduced using Frechet’s bounds (for
greater detail see: Rachev, 1984a).

Remark Al] The probability ITy=pr (7y>T7,)=pr(Te=T)=E{/(Ty+T)}, where
I (.) is the indicator function, may be justly regarded as the limit 2 (T, T)at a—0.
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For any finite « =0, 2 (T, T)=0 if and only if pr(74>7,)=0. Dobruchin (1970)
proved that lime_ol, (®,, ®,)=0o(d,, ®,), and thus, setting by definition I, = 2Ty, T),
we directly obtain the lower boundary in (8). In this specific sense (A4) may be re-
garded as generalization of the theorem from Section 3. When a=1, there is evi-
dently the equality (7, T)=£E(Ty)—E(T), and in this case [(®, ®,) is the dissi-
milarity index of Gini, i. e.:

L, @)= [ 1,(x)~ ()| dx.

Remark A2 Based on the results of Fortet-Mourier [2] and S. Ra-

chev [14] it is valid to say that if Fi"(t) and Fim(t) are the empirical counterparts
of the distribution functions F,(£) and F(¢), then

pr{Z T, T) = lim [ (F", Fm)=1.

min (n, m)—>x

A similar statement is, evidently, true for Lu(7y, T) as well.
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