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ON THE TANGENTIAL OBLIQUE DERIVATIVE PROBLEM
FOR A CLASS OF ELLIPTIC SECOND ORDER
QUASILINEAR DIFFERENTIAL EQUATIONS

PETER R. POPIVANOV, NICKOLAI D. KUTEV*

The tangential oblique derivative problem for an elliptic second order differential operator having
a monotone type nonlinearity is studied and theorems concerning Lhe existence, the unicity and the
smoothness of the solution are shown.

1. Introduction. At the end of the sixties the theory of second order linear ellip-
tic differential operators having Neumann type boundary data was developed. Since
the first order boundary operator can be considered as a real nondegenerate smooth
vector field / on 0Q two different cases appear:

(i) (¢ is not tangential to 0Q;

(i) ¢ is tangential to 0Q at the points of a subvariety S=oQ.

There are no difficulties in case (i) since then the well-known Agmon condition
is fulfilled and the corresponding boundary value problem (b.v.p.) turns out to be
of Fredholm type. On contrast with this the situation in case (ii) is rather complicated.

In the present work we shall investigate the b.v.p. (ii) in the nonlinear case.
This non-classical problem could possibly be applied in geometry, physics etc. [3] which
justifies the interest in it. Our study is based on the well-known paper of Egorov-
Kondratiev [3] where the tangential oblique derivative problem is investigated in
Sobolev spaces for linear elliptic equations. Here is considered the same problem (ii)
but unlike [3] it is reffered to a class of elliptic second order p.d.e. having a non-
linear right-hand side f(x,u). The results obtained by us in Holder spaces are of the
same type as these established in Sobolev spaces in [3].

As far as we know, this is the first work where existence, uniqueness and smooth-
ness of the solutions of non-linear elliptic equations with boundary conditions (ii) are
studied in Holder or Sobolev spaces.

To prove our main results the following methods will be used: the maximum
principle, barrier functions, Leray-Schauder’s principle and elliptic regularization. We
shall make use of the classical Holder space C* ¢, where & is an integer and 0<<a<Cl.

In Section 2 we state the main problems and formulate the main results. Section 3
deals with the proof of Egorov-Kondratiev's result [3] in the linear case by means
of the Holder technique as well as with the proof of Theorem 1. In Section 4 Theo-
rem 2 is proved.

A short communication for the results presented here was published in [5].

2. Statement of the problem and formulation of the main results. Let O be
a bounded domain in R", n -2, with smooth boundary and § be a smooth subvariety
of 0Q of codimension 1 in dQ. When studying the tangential oblique derivative prob-
lem two different cases stand out for the smooth nondegenerate vector field / which
is tangential to 0Q at the points of § and is transversal to S:

* This research was partially supported by Commitee for Science of Council of Ministers of Bulga-
ria under contract No 55.
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1. [ preserves its sign in a neighbourhood (ngbh) of S (the orientation with res-
pect to the outer normal v=(v}, v2,... V") is implied);

2. | changes its sign near S.

First we will consider case 1 i.e. the following b.v.p.

(1) 5 a¥(x)0%0x.0x,+ £ bi(x)0u/ox, = f(x, 1) in Q ou/ol+o(x)u=e(x) on 9Q,
1 i=1

ij=

where du/dl= % o*(x)0u/dx,
k=1

(2 T ai/(x)&E/=r|E[? A=const>0
ij=1
for every x€Q, £=(E!, £2,...,E")€R", a/=a’. Moreover, we suppose that the vector
field / is tangential to 0Q at the points of S, / is transversal to S and [/ preserves
its sign, i. e.

(3) gl cktv=0on S; o .:.. o*vf>0 on dQ\ S.
k=1 k=1
Unlike the classical Neumann problem, here we need additional smoothness for
the coefficients of the equation and the boundary operator. More precisely, we assume
that
ail, bi¢ Clo(Q); f(x, u)€ C4(QxR);

4 ok, o, 0 €C>%(Q); 0Q, S¢C** and
fux, )0 in QxR |o|=0c,=const=>0 on 0Q.

Thus we can formulate the following result.

Theorem 1. Suppose Q is a bounded domain in R" and the coefficients of
the equation and the boundary operator satisfy (2)—(4). Then b.v.p. (1) has a
unique solution u¢C»*(Q)1C**(K) for every compact KeQ, KNS=@.

Remark 1. The uniqueness result in Theorem 1 remains valid for the wider class
of functions C%Q)1 CY(Q).

Remark 2. There are nodifficulties to obtain the following regularity theorem. If
we assume, in addition, that a/, bi¢C**(Q), k-1 is an integer, f¢C**(QXxR); 0Q
SECk2e;, of g, ¢CrLa(Q) then every CQ)( CY(Q) solution of b.v.p. (1) be-
longs to the class C*+! ¢ (Q)() Ck+*¢(K) for every compact K=Q, K1 S=Q.

In order to formulate the result in case 2 let us recall that for linear elliptic
equations the corresponding b. v. p. posseses either a kernel or a cokernal of infinite
dimension (see [3], [4]). To avoid this difficulty an extra boundary condition is pre-
scribed on S (see [3]). This new effect arises also for nonlinear equations as will be
illustrated in a simple example. More precisely, we shall examine a special b. v.p. for
the Laplace equation in a ball i e.

) Au=f(x, u) in B={x¢eR"; | x|<R}
' u, =u’(x) on 0B, u=u'(x") on E=0dB{x,=0},
where x’=(x;, Xg ..., Xp) _

Theorem 2. Suppose that fe¢C**(BXR), u° u'¢C**(B) and f(x, u)=0 for
(x, u)€ B<R, Then b.v.p. (5) has a unique solution u¢ C**(B)(|C*"*(K) for every
compact KB, K| E=Q.
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Remark 3. The above theorem remains valid in a bounded domain Q=R",
Q¢ C* e, provided that d/dx, is an operator tangential to 0Q at the points of the
set {x,=const}N0Q, and transversal to that set.

Remark 4. As in Theorem 1 we can formulate a similar regularity result for
b. v.p. (5). If we assume that feCk1¢(BxXR), k=1 is an integer, «° u'¢C*+!(B)
then every C%(B) CY(B) solution of (5) belongs to the class CH+2e(B) N Ck+3.e (K)
for every compact KB, KN E=(Q.

3. Proof of Theorem 1. First we shall prove the result of Egorov—Kondra-
tiev [3] in the linear case by means of the Holder technique. For this purpose let
us consider the following linear b.v. p.

©) L= £ ai/(x) 0 u/0x;0x;+ T bi(x)0u/0x;+c(x)u=f(x) in Q
ij=1 i=1

ou/dl+o(x)u=0(x) on 0Q,

where the operator L, and the vector field { satisfy (2) and (3).

Without loss of generality we assume that 6>>0 and (/, v)>0 on 0Q\S. Then
we have the following result. B B

Lemma 1. Suppose that a’, b, c, f¢C"*(Q), o*, 0, 9 €C**(Q); 0Q, S¢C** and
6>0,>0, c(x)=0. Then under the assumptions (2), (3) the b.v.p. (6) has a unique
solution u¢ C*(Q)NC*>(K) for every compact K=Q, KN S=Q.

Proof of Lemma 1. The uniqueness in Lemma 1 follows from the uniqueness
proved in Theorem 1 and we omit it.

In order to prove the existence result we consider the regularized b.v.p.

(7) Lu=f(x) in Q, du/dl+ecdu/ov+ocv=¢(x) on 0Q
for all sufficiently small positive &. From th. 6.31 in [1] it follows that (7) has a uni-
que solution u* ¢ C3 @ (Q). B

Our main purpose is to prove C*¢(Q) estimates for #* with a constant indepen-
dent of €. For convenience we will omit the index & in #® and we will call the con-
stants C,, i=1,2,...,independent of ¢ and t, constants under control.

3.1. Global estimates for u" Suppose that the origin does not belong
to Q. We consider the auxiliary function _h=iu‘+Nl(exp(a1x!’)—exp(aR’)—-N),
where R is the radius of a ball containing Q and a, N, N, are positive constants.
We choose the constants a, N, sufficiently large, independent of ¢ and N, so that
the inequality L,2>0 holds in Q. A simple computation shows that 0k/dl+edh/ov
+6h<<0 on 0Q when N is sufficiently large, N is independent of &. Consequently #

does not attain a positive maximum in Q,i.e.
(8) sup | u® | <= Ny(N+exp (aR?)).

From (8), the interior Schauder estimates (see th. 6.2 in [1]) and the local Schau-
der estimates up to the boundary (see th. 7.3 in [2]) we immediately obtain the
estimate

9) [ 3. ag, S ColK)

for every compact K=Q, K S=@, where the constant C, is under control.

32 Local Schauder estimates near S. There exists a finite covering
D,of S k=1,2...,m D,-Q and a positive number £,>0 such that the family
of C2a vector fields [ +ev, O=e<¢, can be straightened in D, by means of a dif-
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feomorphism smoothly depending on & and having C>¢(D,) norms under control. It
is important to note that the integral curves of —(l/+ev), 0-—e<e¢, starting from the
points of I',=0Q( 0D, intersect 7, where 7, T,=0D, T,NT,=Q@, k=1, 2,.

(see [3]). Let the functions (* be partition of unity in a ngbh of S s.lbordmated to

D,, i.e. (k¢C=(D)), £*==1 near S and £*==0 in a ngbh of T, As was shown in [3]
the dlffeomorphlsm mentioned above transforms the vector field /+&v into (1,0,.

Let T, be the translation of [, in —x, direction at a distance 6>0. For convenlence
we will use the same notations for the transformed domain, as well as for the trans-
formed equation. Further on, any lower index / will denote differentiation with res-
pect to x; whereas the upper index / is a summation index and summation convention
is understood, i. e. a"/'u,-,zz;'j:l a""u,‘._,j.
A simple computation shows that u*=C*u satisfies the following b.v.p. in D,
L,u*=f§‘+a"&z{@%—?a"’ﬁ’?u,-& bfulk in D,
uf+ouk=oC*+ult on I, u*=0 on T,
and the function v*=u# satisfies the Dirichlet problem
L, v*=F*(x) in D,
VA= @C*+ult—oul*=y* on I, v*=0 on T,
where F*=a"ull +a"u, 0} +2a" u;C} +2a" Cruy—aly Cruy+biChuy + bl u L — biCta,
—o Grut+fiChHfG.

From the Schauder estimates for the Dirichlet problem (10) (see th. 6.6 in [1])
we obtain the estimates

(] ]) ‘l vk ”C7~ “(D,‘)S C?( i F* Ilc“(Dk)+ ” wk ‘IC" "(Dk)+? vt ”6‘0(7),())
n m
= Cg( ” u ‘C'J. 0(51‘)+ 1 )Smcs /'};1 " uj”cz- a([)‘/)'*'ca H (l —jz:l c/)ll I(;?. a(b‘k)

m
=mCy, Z [11'|§cg,..(b-)+C,.

Let 6= 1/(8m*C,) and £, be the bounded domain surrounded by T',, I, and the cor-

responding parts of 7,. Note that I, £, depend on & which is fixed and under
control.

Since u*(x)= [ v* (s, x"")ds+u( yy, x") for x=(x,, X" )€ £, (¥, x")¢l, we have
the estimates

(12) | @* | ca. ,(Ek)sﬁ I 'v‘lfcz.“(;_f‘,+1|'”*|cz(,,—~‘)+C5
1
<25 || v‘H,, u(t"')'*‘ 5 || u* [lc2. o(ED'f‘Cﬁ.

In (12) we twice used the standard interpolation inequality (see Lemma 6.35 in [1])
as well as (9). From (11) and (12) we immediately obtain the estimates

|;u~”c,',(§)s46mc,’§l ||u/l|(_.z,..(,;l)+C7 for k=1,2,...m, i.e.
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1

m ) " . 1] =
) u*k | . 3 wll — +mC-<— X ||lu/l ~ +C
k=1 ” I‘Cz‘ "‘EU"<" 2 j=1 | "Cz'u‘Dj) Mz 2 j=1 l ',C2'°(Ej) 8

Consequently we have

m
Wk | o
kEllfu 2. .,(Ek);:QCS and

m
l#llc2 oz )-—’” Z “/'|c2‘°(is}>+.|(1— ji Sulca u(UEjyg—Cir

The above estimate as well as (9) give us the estimate

(13) <Cio

|| u# |C2 a@) =

where the constant C,, is under control.
By means of (13), Cantor diagonal principle and Ascoli-Arzela theorem we obtain

a subsequence &, —0 for which ufi(x)— u(x)€ C**(Q) in the norm of C2(Q). Letting
g;— 0 in (7) we obtain that u(x) is the desired solution of (6).

Applying the already proved Lemma 1 and Leray-Schauder’s theorem (see th. 10.4
in [1]) we will prove Theorem 1.

Proof of Theorem 1. (i) Existence. Let us consider the Banach space

C"*(Q) and the operator 7 which for every veCh*(Q) is defined as the unique solu-
tion u¢C>*(Q) of the linear b. v. p.

Liu=f(x, v) in Q; ou/ol+o(x)u=o¢(x) on 0Q.

It is easy to check that the operator 7 is a compact one from C"¢Q) into

C"«(Q). In order to apply Leray-Schauder’s theorem for the operator 7 we must prove
the a priori estimate

(14) | u “Cl “(ﬂ)=cll

wfth a constant C,, independent of t¢[0, 1] and u for every C*>¢(Q) solution z(x) of
the b. v.p.

Liu=tf(x, u) in Q; o0u/dl+o(x)u=19(x) on 0Q.

The proof of (14) will be carried on in several steps.
33. Global a priori estimate for u«. We introduce the operator

Ly~ .i, @V (x)0%0x, Ox+ 3 bAx)0/0x,—c(x),

where o(x)=1 [} f,(x, su)ds=0 and for which the equality Lyz=1f(x, 0) holds in Q.

Further on, we will use the notations stated in the linear case,

For the auxiliary function A=u+ N,(exp(a|x ?)—exp(aR?)—N) we have the
inequality L,2>0 in Q when a, N, are sufficiently large, independent of t and M.
When N is sufficiently large the inequality dk/dl+o(x)h<<0 holds on dQi.e. & does
not attain a positive maximum in Q. Consequently &< N, (N+exp(aR?) in Q. Repeat-
ing the above procedure for —u we obtain the estimate

(15) sup|u|=Cy,
0

with a constant C,, under control.
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By means of the standard technique for the oblique derivative problem for quasi-
linear elliptic equations and using (15) (see for instance [6, 7]) we obtain the estimate

(16) sup|Du <C3
K

for every compact K—Q, K S=@ with a constant C,; depending on K which is
under control. Now from (15), (16), the interior Schauder estimates and the local esti-
mates up to the boundary, as in the linear case, we have the estimate

(17) Hu”c& (K) §C14

for every compact K=Q, KNS=@ and a constant C,;, depending on K which is
under control.

34. Local a priori estimates near S In order to prove C>%Q) a pri-
ori estimates in a ngbh of S we straighten the vector field / in ngbhs D,, k=1, 2,
...m of S. Using the notations in Lemma 1 we obtain that o*=(C*u),, satisfies the

b. v. p.
a’ (x) v}, +bf (x) vi=F*(x) in D,
v*=19L*+ult—oul* on Iy; v#=0 on T,

where

Fr=a"ul}, +a" u, O} +2a" uy Ck+2at Cku,—ayf Ckuy,;

+ b0 Ckuy+ 0w —bi G+ f R fu + f T

We will repeat the procedure in the linear case, the only difference being the appli
cation of the additional estimate
(18) H Ckfu(x, u) u, !|C°(D'k)§cl5 H u ”(:2- U(Ek)'
Since || - i]ca(D—k)sC,’sH- Hcl(ﬁk) we reduce the proof of (18) to the proof of the inequa-
lity || C* fuu (x, @) uy ”/“d‘(ﬁ,\)ﬁciéi u”cgﬁk). It can be easily seen that the only diffi-
culty in evaluating || C* f,, (x, ©)u;u, Hco(uk) is due to the term |Du|[2. The inequality

(19) sup |DuP<Cig|u ||(:2(5k)
Dy
2
is a special case of the Giagliardo—Nirenberg estimate (see [8]) supg|Du|
=const ||| oq; | # | c2q which holds for every C¥Q) smooth function and every

bounded domain with C? smooth boundary. Another proof follows from the well-known

result for the gradient estimate of the nonnegative functions.
Repeating the same procedure as in the linear case we have the estimate

ul,2 a0y <C,; with a constant C,; under control where |) £ is a compact ngbh of S-
¢ (UE)
)

The above estimate and (17) give us the desired result ||u||., o SCs

Thus (14) is proved and so is the existence part of Theorem 1.

(ii) Uniqueness. We will prove the uniqueness of the solution of b.v.p. (1) in
the wider class of solutions C?(Q) C'(€). Suppose u, v¢C¥Q) CY(Q) are solutions
of (1). Further on, we will use the notations in Lemma 1. Let £=~0 be an arbitrary
fixed number and w=u—v. Then w satisfies the b. v.p.
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Law= X a(x)w, ,+ X b/(x)w,—f(x)w=0 in Q
. i l=l 1

ij=1
ow/dl+o(x)w=0 on 09,

where fzféf,, (x, v+s(u—v))ds=0 in Q. For the auxiliary function ki=+w
+e(exp(a x|?)—exp(aR?)—N) the following inequalities hold: L32>0 in Q when a
is sufficiently large and independent of &, N and 0k/0l+o(x)2<<0 on dQ when N is
sufficiently large and independent of &. From the interior and boundary maximum

principle it follows that # does not attain a positive maximum in Q, i.e. h=0 in Q.
Consequently supg |w|=¢(exp(aR?)+/N) and since e>0 was chosen to be arbitrary

it follows that w==0in Q, i.e. u=v in Q.
4. Proof of Theorem 2. First we will prove the uniqueness of b. v.p. (5) in the
wider class of solutions C?(B) C'(B).

(i) Uniqueness. Suppose that u,, u,€ C*(B)N CY(B) are two different solutions
of (5). Then u=u,—u, satisfies the b. v.p.

Lu=Au— f(x)u=0 in B u, =0 on 0B, u=0 on E,

where fN(x)zf(‘)f,, (x, ug+s(u, — uy))ds=0 in B. Let e>0 be an arbitrary positive
constant. For the auxiliary function 2=u+¢(2|x’ |*—x>—2R?) we obtain that L,2>0
in B, h, =—2¢ex, on 0B, i e. h does not attain a positive maximum in B and a ma-
ximum on 0B\ E. Since =0 on E it follows that #=3eR? in B.

Analogously, by means of the auxiliary function A,=u—e&(2|x'[2—x2—2R?) we
obtain that 4, does not attain a negative maximum in B, i.e. #=—3¢R? in B. Con-
sequently |u|<3eR? in B and since & is chosen to be arbitrary it follows that #=0
in B, i.e. u;=u,.

(ii) Existence. Before we prove the existence part of Theorem 2 we need the corre-
sponding linear variant of Theorem 2 in Holder spaces.

Lemma 2. Suppose that u® u'¢C*(B), fe C>*(B), 0<<a<<l. Thenthe b.v.p-

Au=f(x) in B

(20) u, =u’(x) on 0B, u=u'(x") on E

X,

has a unique solution u¢C»<(B)NC*(K) for every compact K=B, KNE=Q.
Sketch of the proof of Lemma 2: We consider the b. v. ps.

(21) Av=f, (x) in B v=u’(x) on 0B
Nw=f(x, 0)—v, (x, 0) in T=B0 {x,=0}
w=u'(x') on E=0BN{x,=0},

where A'w=X""tw, ,. From the Schauder theory (see corollary 6.9 in [1]) b. v. p. (21)
has a unique solution ©¢C*¢(B) and b. v.p. (22) has a unique solution we C3o(T)-
It is easy to check that the function u= [{"o(x’, s)ds+w(x')¢C*»*(B) is a solution

of (20). Thus Lemma 2 is proved.
By means of the already proved Lemma 2 and Leray-Schauder’s theorem we will

prove Theorem 2. Let us consider the Banach space C*(B) and the operator G which
is defined for every g¢C*<(B) as the unique solution u¢ C*“(B) of the linear b.v. p.

(22)
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Au=f(x, g) in B u, =u" on 0B, u=u'(x") on E.

It is easy to check that G is a compact operator from C2¢(B) into itself. In order
to apply Leray—Schauder theorem we must prove the following estimate

(23) “u|c7.a(§) §M1

with a constant M, independent of t¢[0, 1] and u, for every C3*(B) solution u of
the b. v.p.

(24) Au=rtf(x, u) in B, u, =w"(x) on 9B, u=w'(x') on E.
We will prove (23) in several subsequent steps.

4.1. Global a priori estimates for # and u,. We consider the ope-
rator

Ly=A—1F(x), F(x)=({lful(x, su)ds=0

in B which satisfies the equality Lju=tf(x, 0) in B. For the auxiliary func-
tion  hy=+tuF tx,u(x, 0)+N2|x' P—x2—2R*)F w' (x')—1supz| x, u® (x'. 0)]
—tsup; |u'.(x")| we have the estimate L;4,>0 in B when N is sufficiently large,
independent of 1, and the equality 0hy/dx,=—x,(2NFtd(x)) on 0B, where
d)(x):f(‘,u;’”(x’, sx,)ds. From the maximum principle it follows that 4, does not attain

a positive maximum in B or on 0B\ E. Since hy=0 on E it follows that £2,=<0 in B,
i.e. supy|u|=M, with a constant M, under control.

Differentiating (24) with respect to x, and replacing #, =v we obtain that v is
a solution of the b.v. p.
(25) Av=1f, (x, w)+1f,(x, v in B, v=1u° on JB.

For the auxiliary function k3= +ovFtu®—tsup|u® +M2|x"|2*—x2—2R?) and the
operator Ly=A—1f,(x, #) we have the inequality Lgh;> +1tf,,(x, u)FtL,u’+N(4n
—4—2)=>0 when N is sufficiently large. Hence 4; does not attain a positive maximum

in B and since 230 on dB it follows that 2;=0 in B, i.e.
(26) sup |u, |=sup|v|< M,
B B

with a constant M; under control.
42. Global a priori estimate for «, .. First we will estimate Dv, v=u,

on the boundary. Let us consider the auxiliary function 2, = +vF tu(x)+ M| x [2—R?).
Then Lghy= t1f, (x, &) Ft(Au—1f,(x, n)u°)+2rN>0 when N is sufficiently large.
Since A2,=0 on 0B, from the maximum principle it follows that 4, attains its maxi-
mum on dB. Consequently, dk,/dv,=0 on 0B, where v, is the unit inner normal to
0B, i.e. |0v/ov,|==M, on 0B. After differentiating the boundary condition v=1u°(x)

in the tangential directions on 0B we obtain the estimate
(27 sup | Dv | =sup| Du, | < M,.
ol on

Let us differentiate (25) with respect to x,. The function v, satisfies the equation
AU, = frn (X, 8)+ 27 frl X, @)V +7T fu (%, u) P+ f,(x, u)v, in B.
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For the function Az=v2+22+ N(|x|?—R?) we have the estimates

Lehs=2 £ v2,+20,A0,+2 L 2+ 20 Av—1f, V2 —1f, V=1 f, (| x P—R*)+2aN
k=1 k=1

=1 f, U2+ 20, (t fant 29 pu P+ T fun ¥ +2 kzl 2420 (1 f+ 1 f,0) +2nN>0

in B when N is sufficiently large since |«| and [v| are under control. From the ma-
ximum principle it follows that #; does not attain a positive maximum in B. Thus
from (27) we obtain the estimate

(28) Sl_lp i T’x,, l =sup | ux,, X iéME'
B B

5. Global a priori estimates for | Du|. First we will estimate | Duz| in T.For this
purpose let us change the variable z=w—tu'(x")=u(x’, 0)—tu'(x’, 0). It is easy to
check that z satisfies the b.v.p.

Nz=tf(x,0,u, (X', 0)—u,  (x's 0)—tA@' in T

2=0 on E=0T.
From the Schauder estimates for the solutions of the Poisson equation (see th. 4.3
and formula 4.10 in [1]) and (28) it follows that sup|D. u(x’, 0)|=sups |w|=M,

The above estimate as well as (26) give us sup|Du|=Ms.

Now we will estimate |Du| in B,=B0{x,>0}. For the auxiliary function
hS:ZZ;{uie_’H-Nu‘-’-&-NI( x2-R?—N,x, and for sufficiently large positive con-
stants N, N, independent of N, we have the inequality Lghs0 in B,. When N, is
sufficiently large from (27) we obtain the estimate Ohg/0x,=Zhzt (2u,uk,,—u,3) e 'n
+2uu, +2N,x,—Ny<<0 on dB[{x,>0}. Thus from the maximum principle we have
that 4, does not attain a positive maximum in By or on 0B, |J{x,>0}, i.e. either &
attains a nonpositive maximum in B, (0B {x,>0}) or ks attains its maximum
on 7. Since | Du| is already estimated in 7 we obtain an estimate for |Du| in Bi.
Analogously, we have a gradient estimate for # in B_=B0 {x,<0}, i.e.

(30) sup | Du |=M;.
B

(29)

From (30) and the global Schauder estimates for the solutions v, w (or 2) of the
b. v.p. (25), (29) it follows that |v/ .2 az=Ms | @ |c2, a5 = M- Finally, from the iden-

tity u(x)= [;"v(x’, s)ds+w(x’) we obtain the estimate

|2, oy = My

with a constant M, under control.
Thus (23) is proved and so is Theorem 2.
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