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OBJECTION AND COUNTER-OBJECTION EQUILIBRIA IN
MANY-PLAYER STOCHASTIC DIFFERENTIAL GAMES

SVETOSLAV D. GAIDOV

In this paper N-player nonzero-sum games are considered. The dynamics is described by Ito sto-
chastic differential equations. The cost-functions are conditional expectations of functionals of Bolza
Lype with respect to the initial situation. The concept of objection and counter-objection equilibrium in
many-player stochastic differential games is introduced and analyzed. Sufficient conditions arc establish-
ed guaranteeing the objection and counter-objection equilibrium for the strategies of the players.

1. Introduction. In this paper we follow the approach of W. Fleming and
R. Rishel [I] to the optimal control of stochastic dynamic systems, but applied in
situations of conflicts, i. e. to stochastic differential games. Let {l,..., N} be the set
of players. The dynamics is described by the equation

dx(t)=f(t, X(t), Uy, ..., updt+g(t, x(£), ty, ..., up)dw(t), L€ty T).

The control «; is chosen by the i-th player in the feedback from u,=u,(t, x(£)) with
the purpose to minimize its personal cost-function

I 1) =B o {0 T KT Ll 0, . 0y) ),

As a solution of the game the notion of objection and counter-objection equilib-
rium is proposed. In deterministic differential games this concept is introduced by
V. Zhukovskii and considered in [8]. In two-player stochastic differential games
the same concept is treated by the author in [2]. The objection and counter-objection
equilibrium is based on the notion of Pareto-optimality (see [3], [4]) and represents a
further development in the game theory in comparison with the Nash-equilibrium
(see [3], [5]).

Let us now give the outlines of the present work. In Section 2 we consider
accurately the formalization of the game. Some results and definitions from our pa-
pers [3—6] are quoted in Section 3. In Section 4 we introduce the notion of objection
and counter-objection equilibrium in many-player stochastic differential games and
analyze some ot its properties. Sufficient conditions for the objection and counter-
objection equilibrium strategies of the players are established in Section 5.

2. Formalization of the game. Let us consider the system (game)
=, Z, (Ui, {Jic o)

Here /={l,..., N} is the set of players participating in the game I'. The evolution of
the dynamic system X is described by Ito stochastic differential equation of the type

(+) dx(t)=f(t, x(t), uy, ..., uy)dt+g(t, x(t), uy, ..., uy)dw(t), te(t, T)

with initial condition x(f,)=x,€R", wheie 7>f,=0. The process w(t), t¢[ty, T) is a
standard m-dimensional Wiener process defined on some complete probability space (£,
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#, P) and is adapted to a family F={#, t¢[t, T]} of nondecreasing sub-c-algebras
of #. The vector x(¢)€R" is the state process and ;¢ U;= R" js the control of the
i-th player, i¢ /. Now let us make the following assumptions about the functions f(Z,
X, Uy, ..., uy) and g(t, x, u,, ..., uy). Suppose
f: [tos TIXR*XU X+ XUy—R"

and

g: [te TIXR" XU X - XUy—R"XR™
have continuous partial derivatives in x, #;,...,uy and let C>0 be a constant such
that

f(£, 0,...,0) + g 0,...,0)=C,

|fe |+ gx‘+l_(21( fu; |41 84 1)=C.

Here |- | is a general symbol for the norms in the respective spaces.

We suppose that each player has complete information about the state vector x(¢)
at every moment £¢[f,, 7] and constructs his strategy in the game I' as an admissible
feedback control, i.e. u,=u; (¢, x(¢f)) where

(- )z [toy TIXRT—= U,
is a Borel function satisfying the conditions:
(i) There exists a constant M;>0 such that
u,(t, x)|=M;(1+x) for all t¢[ty, T], x€R";
(ii) For each bounded set B=R" and T'¢(T,, T), there exists a constant K,>0
such that for arbitrary x, y¢ B and ¢¢€[t,, T7]
|u;(t, x)—u,(t, ¥)|=Ki x—Yy|.

Denote by #; the set of strategies of the i-th player, i€/ and %=1l ; %, U=1IL;¢; U,
Let a vector of strategies uw=(a,,...,uy) €% be called for brevity simply a strategy.

The assumptions given above imply the existence and sample path uniqueness of
the solution X={x(¢), t¢[fo, T]} of equation (%) corresponding to the control u¢ #
(see [1]). Moreover, X is an a.s. continuous Markov process and its infinitesimal ope-
rator 7 (1) has the form

@V, X)=f' (bt % W)V (E )+ trfat, x, )Vt x)]

where @ =gg’ and prime denotes vector or matrix transpose. Here V (¢, x) is a real-
valued function with continuous partial derivatives up to second order for all £¢ £, T],
x €R”

Let L, ¥, be continuous functions satisfying the polynomial growth conditions

Lt X, uy . o up) | =Ci(l+]x [+ Eu ),
icl
¥ (¢ x) =G+ x])

where «, C, are positive constants. Now we introduce the cost-function J;(u) of the
i-th player

Ji (@) =Es, « {¥, (T, x( T))+,jr‘L,.(t, x(t), Uy .., uy)dt), iel

The object of each player in the game I' is to minimize his own cost-function.
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3. Auxiliary notions and results. For the completeness of the presentation we
quote some facts from our previous papers.
Definition 3.1 (see [6]). The strategy ui¢ % is a guaranteeing strategy of the
i-th player in the game I if
min  max J; (4, ur;)= max J;(uf, ur ;).
u; ar\i ar\i

Here I i={l,...,i—1, i+1,..., N} and wp =y, ..., 0 Upyy ..., W) 6M, ¢ %
=W Let also (u;, up)=u.
Definition 3.2 (sze [3], [5]). The strategy w«"¢7 is a Nash-equilibrium strategy
in the game I if for each u¢%,;
Jiuy, ..., uf

n
i1, 4o 4

i1t

Sy =J (@t u)=J; @), el

Definition 3.3 (see [3], [4]). The strategy u?¢% is Pareto-optimal in the game
I if the relations J/,(#)<J, (¢?), i€l for some strategy u¢% imply the equalities J; ()
=/, (w), i¢l

Theorem 3.4 (see [3), [4]). The strategy u?€ % is Pareto-optimal in the game I'
if there exist a vector A=(ry, ..., Ay)ERY, A;=>0, i€/, A, +---+ry=1 and a real-
valued function V (¢ x) such that for all #¢[¢,, 7], x¢R” the following conditions jointly
hold :

(a) VvV, V,, V,, V. are continuous;
(b) H.(¢, x, u?)=0;

(c) Hi(t, x, u)=0 for each strategy u¢%;
(d) V(T, x)= Z LY (T, x).
i€r

Here for all t€[¢,, T], x€R” ucU,
Hy(t, x, u)=V,(t, x)+ALw)V(t, x)+ 4)(:17% L(¢ x, u).

4. Objection and counter-objection equilibrium. Basic properties. Now we gene-
ralize for many-player games the concept of objection and counter-objection equilibrium,
considered in [2] in the case of two players. Let #¢# b2 an arbitrary strategy.

Definition 4.1. The strategy uS€# is an objection of the i-th player to
weu if J(u u)<<J;(u).

Definition 42. The strategy u?¢¥; (i=)) isa counter-objection of the j-th
player to the objection ul of the i-th one if

Ji(u\ug, uy=J;(u) and Jy(ullu3 us)<J; (4.

Here (u||ug, a$®)=(uy, ... ty_q, U9 igys o oo Ujmgy U0 Hpgre oo uy).

Definition 4.3. The strategy u'¢ ¥ is an objection and counter-objection
equilibrium strategy in T if it is Pareto-optimal and either there is no objection of
any player, or to every objection of any player there exists a counter-objection at
least of another one of the rest of the players.

Now we analyze some properties of the objection and counter-objection strate-
gies and compare them with other optimal strategies.

Property 4.4.Pareto-optimality. By definition we have that objection and counter-
objection equilibria are Pareto-optimal.
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Property 4.5. Pareto-optimal Nash-equilibria are objection and counter-objection
equilibria. Let us recall that Pareto-optimality is required in both cases. Now we prove
that Nash-equilibrium implies the non-existence of any objection of any player. Let
u'¢% be a Pareto-optimal Nash-equilibrium strategy. By Definition 3.2 we have that
for each wu, €%,

J@ lu)=J,(u"), i€l
Thus, there is no i¢/ and u, €%, such that
Ji (" u)<J; (@),
which means that #* is an objection and counter-objection strategy in the game I™
Property 46. Individual rationality. Let u2¢%, be a guranteeing (minimax)
strategy of the i-th player (see Definition 3.1). Then for each u; ;€%
Ji(ug, upi)= max J, (@ u/i)= min max J;(u).
“l‘gi u; "l\\i
Suppose u* is an objection and counter-objection equilibrium strategy and let
J,(u*)> min max J;(u).
u; "l\l
© Then J,(u'y>J, (u%, u, )=J;(u"| u*) which means that u% is an objection to «". By

AN
Definition 4.3 there exists j¢/™/ and w{°€¢%; such that

Jy (| g, use)=J,(u’).

Hence J, (u*)<J,(u"|| ut

rid

uj°);\,imax,,l\iji(u§, u;i) and finally we have

J; (@)<min max J; (u)<J(&")
i i

which obviously is wrong. Therefore

J; (¢")=min max J, (u).
"1 “l\\i
Thus, the values of the cost-functions in an objection and counter-objection equilibrium
point are at most equal to the minimax values.

Property 4.7. Saddle-points in two-person zero-sum games are objection and
counter-objection equilibria. Let us consider the game To=({1, 2}, X, {#,, %}, J(u;,
uy)) with the objection of minimizing J(u4,, ug) for the first player and maximizing
J(u,, uy) for the second one. Let (¢, u3) be a saddle-point of Iy, i.¢. for each ul(fl/l
and wu, €%,

J (S, ug)=J(ug, u)=J(uy, uy).

Consider also the game T,=({l, 2}, &, {¥,, U}, {/,, J3}), where J,=J and J,=—J
Here both players choose their strategies with the aim of minimizing their own cost-
functions. First we prove that the saddle-point (&9, u3) of I'; is Pareto-optimal in I'y.

Suppose (u9, u3) is not Pareto-optimal in Iy, Then there exists a pair of strategies,
say (u,, uy)€ U, < U, such that

Ji(uy, uy)<J,(us, uy), i=1, 2,

7 cn. Cepanka, K, 2
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where at least one of these two inequalities is strict. Then

Jy (g, o)+ Ty (uy, wy)<<Jy (5, ug)+Jo(uj, u3)
and hence

0=J(uy ug)—J Uy, Us)<J(u, uy)—J(us, uy)=0
which is wrong. Therefore the Pareto-optimality of (uf, u3) is established.

Next we show that the saddle-point (3, u3) of T, is a Nash-equilibrium in I'y.
Indeed, for each u €%, we have

Jy (g, wg)=J(uy, ug)=J(usg, u)=1J, (us, uy
and for each wu,eU,
Jo (U, ug)=—J(us, ug)=—J(uj, ug) = Jo (U, u3).

Finally, we come to the conclusion that the saddle-point of I', is a Pareto-optimal
Nash-equilibrium in I'; and hence, by Property 45 it is an objection and counter-
objection equilibriura in T,. Therefore the notion of objection and counter-objection
equilibrium includes the notion of a saddle-point for zero-sum two-player games as a
special case.

5. Sufficient conditions. [n this section we establish conditions which are suffi-
cient for the determination of some strategies as objection and counter-objection equlib-
rium ones. Denote

Gi(t, x, u)=VO(t, x)+ @) VO, x)+L (¢ x, w) icl
where t€([t,, T], x€¢R", uelU.
Now consider the next two assumptions for the strategy u’"¢ #.
Assumption 5.1. There exists a vector h=(h,, ..., hy)ERY, X,>0, i¢],
A+ +iy=1 and a real-valued function V(t, x) such that for all telt,, T], x€R"
the following conditions jointly hold :

(a) V, V., V,, V., are continuous;

(b) Fo(t, x, u*)=0;

(c) Hi(t, x, u) =0 for each strategy u¢;

(dy V(T, x)=X MY (T, x).

iel

Assumption 52. There exist real-valued functions V@ (t, x), i€l such that
for all t¢[t, T), x€R" and i€l the following conditions jointly hold :

(a) VO, VO, VO, V) are continuous ;

(b) G;(t, x, u")-0;

(c) VU(T, x)=" (T, x).

Remark 5.3. The conditions of Assumption 5.1 are equivalent to the conditions
of Theorem 3.4, which means that u" €% is Pareto-optimal in the game I
Proposition 54. Let Assumption 5.2 hold. Then

VO (t,, xo)=-,t (!l.), icl
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Proof. Suppose X'={x"(¢), t¢[t,, T]} is the solution of Ito equation (%) corres-
ponding to the strategy «*. Write Ito—Dynkin formula for V (¢, x), &* and X":

VO, x)=E, (VO (T, () [ VO (5, ' )+ @) VO (x, ' (] de) icu.

This representation in conjunction with conditions (b) and (c) from Assumption 5.2
implies the relation

T
Vo (t, x)=E, (YT, x"(T)+[L:(x, x"(x), &’)dt}, ict
and hence

T
VO (te Xo)=Eeo s, {(¥i (T, x*(T)+ [ Lit, x"(t), @) dt}, i¢l.
t

Further we consider the following two possibilities called (A) and (B), supposing
that Assumption 5.1 and Assumption 5.2 hold:

(A) For all i¢l, t¢[ty, T), x€¢R" we have that G, (¢ x, « | 4;)=0 for each w;¢¥;
In this case we can formulate such a result.

Proposition 5.6. Let possibility (A) hold. Then there does not exist any
objection of any player to u’.

Proof. Suppose XO={x"(t), t¢[t, T|} is the solution of Ito equation () corre-
spc(:in(/i\i,?g to the strategy u'|u. Write lto—Dynkin formula for VO (¢, x), u°| 4;
an o

T
VO, x)=E, VT, x(T)— [V (x, xO (@) +S (@[ a)V') (z, X9 ())] dr}-
4
Then possibility (A) and condition (c¢) of Assumption 5.2 imply that

V@ (t, x)=E, {\¥, (T, x"”(T))-i—}L, (xr, xO(x), &* | u;)dt}
t

which leads to
.
VO (ty, x0)=Es, {¥; (T, XD(T))+ [ L (¢, xD(¢), u" |u)dt)
1,

Therefore for each i¢/ we have J (¢")=VO(t, x,)=J;(u" |u;) for each w;€¢%«, and
hence there is no objection of any player to "

Thus we come to one of our main results.

Theorem 5.7. Let Assumption 5.1, Assunmption 5.2 and possibility (A) hold.
Then u* € is an objection and counter-objection equilibriun in the game T.

Now, let us consider the second possibility:

(B) There exist i¢/ and u2¢#, such that for all £¢[fy, T], x¢R" we have G(f,
X, u" || u)<0.

Proposition 58. Let possibility (B) hold. Then u° is an objection of the
i-th player to u’.

Proof. Ito—Dynkin formula and Proposition 5.4 imply that

J @)=V (b x0)>J, (0" 1),
Further we shall describe two different approaches to the formulation of suffi-

cient conditions for counter-objection strategies. The first approach is based essentially
on the use of the Pareto-optimality of «".
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Proposition 59. Let u*e#; (j+i) be such that G,(t, x, u"||u}, u?)<0 for
each kel - i. Then us® is a counter-objection of the j-th player to the objection u;.
Proof. The application of Ito—Dynkin formula and Proposition 5.4 imply for
each kel i
@)=V (to, xo)=Jy (u" | u$ )

and in particular for ji J;(u")=J; (u"| u}, us). Suppose J; W>J; ("l uf, usP).
Taking into account that J, (u"| u?, u;‘“)g],(u‘) for each k¢ /i, we get

Jow® | u®, u)=J,(u") for each k¢l

where at least one inequality (i-th one) is strict. Then the Pareto-optimality of u-
-mplies that
Ji(W" | ug, u)=J, ()
which means that uf° is a counter-objection.
Thus, we can formulate the following result.
Theorem 5.10. Let Assumption 5.1 and Assumption 5.2 hold. Let there exist
j, j€I (i +)) and u,€ U, u;€ U; such that the system
| Gi(¢t, x, u"|u)<0
| Gy(t, x, u'|lu, u)=0 for each kel\i
jholds for all t¢lt, T), x€¢R™ Then u' ¢ is an objection and counter-objection equi-
librium in the game T.
The second approach leads directly to the verification of the conditions of the defi-

nition for a counter-objection strategy (see Definition 4.2).
Proposition 5.11. Let u;%?/ (j=£i) be such that

LG (t, x, 0| us, u;“)\:O
, Gy (8, x, uyllug, u)=0.
Then uy® is a counter-objection of the j-th player to the objection us.
Proof. Let us apply twice Ito—Dynkin formula and Proposition 5.4. Then
we get
Ty = VO (b x) =y (| s w5
and
1) =V (to x0)=J, (@' | us, us?)
which completes the proof of Proposition 5.11.
It is interesting that the above result (Theorem 5.10) can be formulated in a new
version.
Theorem 5.12. Let Assumption 5.\ and Asumption 52 hold. Let there exist
i, jeI (i=)) and u,€ %, u,€U; such that the three relations
G,(t, x, a"||u,)<0
Gt x, u" | u u)=0
G/(tl X, u.l‘lui' u/)SO

Jjointly hold for all t¢lt, T), x¢R™ Then u"¢u is an objection and counter-objec-
tion equilibrium strategy in the game T.
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6. Concluding remarks. In this paper the concept of objection and counter-
objection equilibrium is introduced and sufficient conditions for its strategies are esta-
blished. In spite of the fact that these conditions are heavy, there is an example of a
linear-quadratic game where the existence of the objection and counter-objection stra-
tegies is proved (see [7]). Moreover, in this case the strategies are found in an explicit
form.

The author expresses his gratitude to Prof. V. Zhukovskii for introducing him
into the subject of research and for the helpful discussions.
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