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NUMERICAL METHOD FOR SOLVING AN ELLIPTIC EQUATION
OF FOURTH ORDER

NATALIA T. DRENSKA

The paper treats the second boundary value problem for an elliptic equation of fourth order in a
bounded domain in R2 The problem is reduced to a problem of the same type in a rectangular and to
a system of Lwo boundary integral equations. The Galerkin and collocation methods are applied to the
studied problem. Theoretical estimates for them are obtained.

The paper treats the second boundary value problem for an elliptic equation of
fourth order with constant coefficients. The domain is bounded and simply connected
in R? and has smooth boundary. This problem arises in the analysis of plates resting
on an elastic foundation of the Winkler type.

The direct application of finite element or finite differences methods to problems
in irregular domains is connected with some specific difficulties. Hence other equiva-
lent formulations of the considered problem have to be investigated. The important
works [1, 2, 3] in this area are devoted to the reduction of the problem to a system
of integral equations on the boundary. But efficient computation of the solution on
detail meshes requires new ways of reduction.

In this paper we reduce the investigated problem to: (i) a differential problem
of the same type in a rectangular containing the given domain and (ii) a system of
two boundary integral equations. Similar methods have been studied for elliptic equa-
tions of second order and biharmonic equations [4, 5].

The paper is organized as follows. Section 1 states the initial problem. In Section 2
we examine the same problem in a rectangular. In Section 3 we give the definition of
the Green function used later. In Section 4 we reduce the problem to a system of
integral equations. Section 5 deals with the properties of this system. First we inve-
stigate the main characteristics of the integral operators. Then we obtain existence
and uniqueness theorems for the solution of the considered system. In Sections 6 and 7
we apply the Galerkin and collocation methods for numerical solving of the integral
equations. [n Section 8 we formulate the final error estimates of the methods and
discuss the obtained results.

1. Let us consider the bounded simply connected domain DcR? with boundary X.
Let r=r(s)=(r,(s), 7,(s)), 0=s=2n be the parametrization of X and let r(s) be 4-times
continuously differentiable function, r(s)¢C*(0, 2r). We assume that the functions g,(s),
2y(s) and f(r) are given and belong to the Sobolev spaces W3-° (0, 2m), W3*(0, 2m)
and L, (D) respectively. Let p be a fixed real constant.

Consider the solution u(r) to the second boundary value problem for the fourth
order differential equation

) A2 u(r)+p2u(ry=f(r), rebD,
u(s)=g, (s), Au(s)=gys), O0=s=2m
Under the above assumptions problem (1) has a unique solution u(r)¢ W3(D).
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Our purpase is to construct an efficient numerical method for computation of u(r).

2. Let Q be a rectangular containing the closure of the domain D. Let f,(r) be
the L,-extension of f(r) from D to Q. Let u,(r) be the solution of the problem

Auy(r)+PB2uy(n)=for), reEQ,

(2)
uy(r)=Auy(r)=0, reoQ

in the rectangular Q.
Denote (r)=u(r)—u,r). Then ©(r) solves the following problem

A2(r)+B2(r)=0, reD,
o(s) = ga(s), Av(s)=gu(s), O0=s=2m,
where g5(5)=g,(5)—u(5), g.(5)=ga(s)—Auys). )

Notice that the solution u,(r) of problem (2) can be efficiently evaluated because
of the domain being a rectangular. Therefore the numerical solution of (1) is reduced
to the one of (3).

3. Define Green’s function G(r, p) with singularities on the curve I as the solu-
tion of the problem (4)

) A2G(r, p)+PB2G(r, p)=08(r—p), r€Q, pEL,
G(r, p)=AG(r, p)=0, reoQ, pex.

Here 3(7) is the Dirac function.
The fundamental solution of equation (4) is [2] the real part of the Hankel func-

tion Re(H§ (VilB| | r—p!))/|Bp>. We shall suggest an effecient method for the cal-
culation of the Green function G(r, p) in a following paper.

4. The solution @(r), ré D of (3) can be represented as a sum of potentials
(5) (r)= i Mp) AG(r, p)dp+£ u(p)G(r, p)dp,

(3)

where A(p) and p(p) are unknown density functions.

Using (5) the boundary conditions of problem (3) yield a system of two integral
equations of the first kind with respect to p(p) and of the second kind with respect
to A(p)

JMP)AG(r, p)dp+ 1 u(p) G(r, p)dp—=gs(r), rex,
Mr)—[B*Mp) G(r, p)dp+ [u(P)AG(r, p)dp =8, (1), €.

The kernel AG(r, p) from (6) has a logarithmic singularity (as the principal part of
G(r, p) is equal to 'r—p2In|r—p|). Let us study the properties of system (6).

5. Let W%(X), k¢R, be the Sobolev space of all 2r-periodic functions
g(s)=% ; o g(l)exp(ils) with scalar product

(g1 &)e=2:1(0) 2 (0)+ 1?\)% () g (D) 12

Let (x, y), be the inner product in the product space W4(X)< Wi—%(X) of 2-vector
valued functions x=(x,, X9)7:
(x, Wp=A(x1, %), (Y1 Y he=(x1, ¥Du+(Xar Yol

with corresponding norm | (x)|,=((x, x))""

(6)
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Define operators A and B by the formulae
Av(r):[*z'(p) AG(r, p)dp, re€L,
Bo(r)= ! o(p)G(r, p)dp, réX.

Let A, and B, be the principal parts of A and B. These principal parts are com-
pletely characterized in the case when I is the unit circle and B=0.

A B
5 < T y T. ;
Let x and y be the vectors (%, W)” and (g5 g)7; let C be the matnx(E~[§‘38 A)

o Bo
and C, — the matrix N
Then the system (6) takes thg equivalent form
(6" Cx=g.

The essential characteristics of the operators A, B and C are formulated in
Theorem 1. For any real k the following properties are wvalid:
(i) The mappings
A, Ay: WE(Z) — WEHL(D),
B, By: WE(Z)— WEH3(Z),
A=Ay WiHE)— WEH(Z),
B—By: Wi(Z)— W (X)
are continuous.
(i) C is a continuous linear operator from W& (X)X Wi-2(X) into Wit (X)X WAE-1(X).
C—C, is a compact operator from W%(L)xX W& -2(X) into Wi+ (X)X W5 (X).
(iii) There exist positive constants y,, vy such that for all x¢ Wh(X) X W’;—?(Z) the
inequalities
(_CO X, x)k =71 l(x) 'z..u.s'

[(C—Co) x, x| =72 (X3,
are satisfied.

Proof. Theorem 1 follows by standard arguments of the classical theory [6] of
pseudodifferential operators on the boundary manifold X and the facts that: the prin-
cipal symbols of A and B are —4n/|[, [ 40 and =/2[L|(i2—1), [[|>1 resp.; the ker-
nel of A—A, is a smooth function belonging to the space C?(0, 2r) under the assump.
tion Z¢C4(0, 2n).

A direct consequence of Theorem 1 is

Corollary 1. The operator —C is hk-coercive: —C satisfies the Gdrding ine-
quality

(—Cx, X011 [{X)|2_o5—TYal (X3 s
Now we use the uniqueness of the weak solution of the differential problem (3)
in the space W7(D) together with Theorem 1 and the Fredholm theorems to prove the

following
Theorem 2. Let k=05 and g be a function belonging to Wi+ (L)X Wi (X).

Then
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Theorem 5. Assume that 0.5=k—0.5=m, m = min(2L,, 2ly+2), k<<min (2L,
Ug+2), Li=1,2,..., ly=1,2,.. [f xeWpE)XWy-2(Z) then there exist positive
constants v, and h, such that for any partition A with h<<h, there is a unique so-
lution x,,eﬁf;' ’*(A) of the Galerkin equations (7) and the error estimate

Hx—xp) lp—05 =77 k305 (o)
is wvalid.

7. With the same notations as in the previous sections we determine the collocation app-
roximation x,¢ Ay 2 (A) =83 ' (A)<Si > (A) of x from the collocation equations
() (Cx)(r)=g(ry), j=1,2,...,N.

Here {r;}’ | are collocation points.

Let /=2, then from the Sobolev embedding theorem the functions in the space
A%'?(A) are continuous and we may collocate. In view of Theorem 1 existence of a

solution and convergence of the collocation method follow from the standard theory [8]

and we establish the next result.

Theorem 6. Assume that I>2. Then for sufficiently small h the collocation
equations (9) have a unique solution xn € Hi =% (A) and the error estimate

(x—xp) 1—05 = Yg Am 02 [(X) |

is walid with some constant v, >0 and |—05=m=2/—2.

8.1. The error estimates obtained in Theorems 3, 4, 5, 6 can be used to compare
the Galerkin method with the collocation method.
(i) Let us first consider the case we use the same degree splines S?*'(A)X S °(A),
k=2, for both methods. Then the highest rate of convergence achieved by both me-
thods is the same, O(k*~'°) in the norm W% °5(X)X W5~>°(X). On the other hand,
the construction of the stiffness matrix for the Galerkin method requires the evalua-
tion of double integrals whilst the collocation method requires single integrals only.
(ii) Splines of different degrees 2/,—1, 2/,—1 with respect to the density functions
and p may be used in the Galerkin method. In the collocation method degrees of the
related splines are 2/—1 and 2/—5. Therefore the Galerkin method allows to apply
splines of lower degrees for numerical evaluation of the solutions of (6").
(iii) In both methods with splines the order of convergence cannot exceed some con-
stant (for the collocation method /—1.5). On the contrary, the Galerkin method with
finite sections of Fourier series converges with any rate m- k+0.5, m—k—0.5.

8.2. In Sections 6 and 7 we have investigated two numerical methods for evalua-
tion of the approximation x,=(X, M, of the density function x =(X, p)". Denote by
v, (1) the corresponding potential function

g‘xh(p)AG(r. p)dPJr-{ w (PG (r, p)dp.

Since the operators A: WA—05(X) — WA+\(D), B: W;—23(X)— W (D) are con-
tinuous mappings ([6], § 8), the inequality
(10) || v—Tp I \!’2‘“ oy = Yo [(x—xp) 05

holds for some constant y,~0. The right-hand term in (10) can be estimated by
Theorem 3. Thus we get the following

Corollary 2. Let x,-(Xy W) € Fy be the appoximation of x-(h, W' by the
Galerkin method (7) with basic functions from Hy. Then the error estimate
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|| v—, ngﬂ (D)éylo NE=m=031 (@) | i1

holds for m>k—0.5, k=1 and some constant y,;>0.
Consequences of Theorems 4, 5, 6 can be obtained analogously. In this way, we
have completed the presentation of our method and its error estimates.
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