Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



DETECTING THE SIGNAL APPEARING TIME
ROSICA DODUNEKOVA

In a white Gaussian noise a signal appears at a random time 0 whose distribution function is
unknown. The linear minimax estimator of 0 and the linear minimax risk have been found and inves-
tigated.

1. Formulation of the problem. Let n(f) be a random process defined on
(0, 7] by

dn(t)="0(¢, o)dt + edW(¢),
(L.1) n(0)=0.
1, if £=0(w),
0, if #<6(w)

and 0(w) is a random variable which takes values in [0, 7]. The process W(¢) is a
standard Wiener one and it is independent of 0, & is a given positive constant.

Suppose we don't know the distribution function of 6. The problem is to esti-
mate the moment 6(w) by using the trajectory n(f), 0=¢~T.

This model describes the following real situation. In a white Gaussian noise with
an intensity €2 a unit signal appears at a random moment. The additive sum (noise+
signal) is integrated by a linear filter and the result obtained is observed. Using the
observation (a continuous trajectory n(f,w), 0=<£-=T), we have to estimate the mo-
ment when the signal appears.

A great number of papers deal with problems close to the one formulated here
(see, e. g., [1][3] and [4], Chapter 7) and they differ in the information about 6,
given a priori. It seems quite natural to apply the minimax approach in our case.
We are interested in the class M of all linear estimators of the form

r

(1.2) 0= g‘ (t)dn (£)—a,

where the weght function [(f) belongs to the Hilbert space L,[0, 7] and « is a real
constant.
Definition 1. The linear quadratic minimax risk is defined by

Here 0(¢, w)=1{0(w)=t} (w):{

(1.3) A'= inf sup E|0—02.
Temoo
Here sup is taken over all the random variables 0 with values in [0, 7).
Definition 2. The linear estimator 6* is called minimax in M, if for every

~

linear estimator 0 N
sup E|0—0]* - sup £/6%*—0 2
0 0

holds, i. e. 0* reaches the infimum in (1.3)
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In the present paper our purpose is to find 6* and A? and to investigate their
properties. The results obtained here are given in [5].

2. Main results
Theorem 2.1. The linear minimax estimator and the linear minimax risk in
problem (1.1) are respectively

*_ r 124272
@1) == g D+ 735 A= e

where (t) is the random process defined by (1.1).

Theorem 2.2. Let the finite moment T be fixed and let the intensity of the
noise € tend to zero. Then the linear minimax estimator 0*=6*e,T) is strong con-
sistent and asymptotically unbiased. If T — <o and e=T-°, a>1/2, then A%, T)r—..— 0
and 0* is strong consistent and asymptotically unbiased, too.

Theorem 2.1 shows, that the linear minimax estimator depends only on the final
value n(7'). This fact seems quite natural. Indeed it is clear from (1.1) that the
“weights” of the trajectory n(f) observed, which are given by the weight function of
the “best” linear estimator of 0, should be one and the same at every moment
t, 0<£<6. That is valid for 6=<¢/=T7 as well. Since the point of signal appearing is
in general supposed to be a random one, one can expect that the weight function
would be constant all over the period of observation. The Lemma in Section 3 con-
firms this assumption and then 0* depends only on the final value n(7).

Note that if €e=0 (no noise), then it follows from (2.1) that 6*=0. Theorem 2.2
shows that if € — 0 then 0*—0 a. s. and £6%¥— E0. Meanwhile the finite moment is
either fixed or it increases as follows: 7'=g='4 @>1/2. In both cases A? tends
to zero.

124 2Te? a g272

3. One subsidiary lemma. Let 0 be an estimator of the form (1.2). Denote by
Fo(f) the (unknown) distribution function of the random variable 0. After some calcu-

lations we get the following formula for the quadratic distance between 0 and 0:
. roT
E 0-02= [ ([ Us)ds—t—a)2dFyt)+ € 1]?
0— 7
where | - | denotes the norm in the space L,[0, 7]. Then (see 1.3)

A? = inf sup { .ll;r( fr I(s)ds—t—a)2dFo(t)+e? || L 2},

oeMo —
T T
(3.1 A?= inf sup { [ ([ US)ds—t—a)PdF(t)+e€?||]}.
l,a 0 -0 ¢

On the right hand side of (3.1) sup is taken over all the possible distribution func-
tions which concentrate the unit mass on the interval [0, 7] and inf is taken over all
the functions [(£), (€ L,[0, 7] and over all the constans a, a € R.

:

Denote for brevity f(¢; {, )= [ {(s)ds—t—a and let £=£(/, @) be any point of
t
the maximum value of f? on [0, 7]. Then it is clear that

sup [ 1ft: 1, PaFw) = | fitd, @) 1, @)
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and this sup is reached by the distribution function

1, if £ = #(l, o),

A= {0, if ¢ <l a)

Now from (3.1) we get
(3.2) A% inf {[ it @); L, al? + & || L]

Lemma. The solution of the problem

(3.3) [, 0); 1, @))® + €2 ||L|[* — infimum, L€ Ly[0, 7], a€R,
is given by
r 7227¢?
P=—3ida’ “="Txie

and the extremum value in (3.3) is €2T?/(T +4¢>).
T
Proof. Evidently [ f(¢({,a);{,@)]?=[ maxog/=r| [ {(s)ds—t—a|]2. We have
t
T T
max | [ [(s)ds—t—a | = max { max ([ {(s)ds—t)—a,
ost=T f 0o=t<T ¢

a— minr (rfrl(s)ds — 1)} = max { &,({, a), hy(l, a)},

[

where

hy(l, a) = oma}/(T ( ]frl(s)ds—t) —a,
(3.4) == ,
ho(l, @) = o — min ([ U(s)ds—1).
OstsT ¢

When /(¢) is fixed, then
r T
hy, + hg = max ([ I(s)ds—t)— min ([ I(s)ds—t) = constant =C.
0st=T ¢ ostsT i

Hence max (k,, #,) = max (kh,, C—h,) = C/2 and the equality
is reached when /%, =hy,—C/2. In this case from (3.4) we get

. T T
(3.5) a(l) = 5 max ([ ((s)ds ) + min ( [ Usyds 1)),
(3.6) ho(l, a(l)) = hy(l, a(l)) = o_rr:ﬁ); (‘j;r U(s)ds—t) —a(l)

ok (max ([ Usds — ) — min ([ (s)as — 1),

0sils
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So we obtained that for every pair (/, @)

T
[f(#L a); [, o2 = { max | [ Us)ds—t—a P=] max frl(s)a's—t—— all)| ]2
0st=T 1

0<t<T 1
— LA a0); b B = [y s all)P.
Hence
By (L @) Lol + ¢ |1 = inf ([ AL )i La@F + e 1]}
o — inf { [u(l o) + 22111}

Taking into consideration (3.7) and the expression for #y(/, u(l)) in (3.6) we get that
the problem (3.3) is equivalent to the following problem:

r T
(3.8) % [ max ([ l(s)ds—t)— min ([ Us)ds — OP + €2 [1]*— infimum, 1€ Ly[0, T].
0=tsT ¢ 0=i=T ¢

Denote by @ the functional which is to be minimized in (3.8), and by Lg the hyper”
plane Ly = {l: [€Ly0, T), [IUt)dt=B}, Be¢R. Then

(3.9) inf @) = inf inf ®().
e L. T) BER l€Lp

Let /¢Ls. We have

o= [ max_ (- oft(s)ds ) min (B [ Us)ds — B +52| 12

t t

(3.10) — b [ max ([ Us)ds+t)— min ([ Us)s +OF el

0=t<T 0 0<t<T 0
We state that the solution of the problem @(/)— infimum, /¢ Lg, is given by
(3.11) lg(t)=PB/T.
In fact if (€Ly, then |I 2= T—'p2— |y | Using (3.10), we get

1 f , =T S + Ty 2B

Ot) - (uws + O ety 2= BT

One can easily verify that the equality in the above inequality is reached when
I(t) = lg(t). Thus we have

. .
inf ®(() = ®(lg) 2&4?14_%&2_.
N
Further it is easy to get
: (B+TP | &Py er
“11(12{ 4 r ) T + 182

and inf is established by p*= —7?%/(T +4e?). Hence (see (3.9) and (3.11).)

nf o) = Sl e ()= (— ) = ().

L€ Lyf0, T) I+ et
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Thus [* solves (3.8) and consequently it solves (3.3) as well (see (3.7)). To complete
the proof we have to calculate «(/*). Using (3.5), we get a(/*)=c*. The Lemma is
proved.

4. Proofs of the theorems. According to (3.2), A? equals to the minimum value
obtained when solving the problem (3.3). This value appeared to be &7 (7" + 4e?) "
Since pair (/*, «*) reaches this minimum value, then by the definition of 0* and from
the Lemma we get
T

- 2427 .
T + 4e?

T+ 1e2

-
0% = [ IX(e)dn(t) —a* = nW(7)+
0
Thus Theorem 2.1 is proved.
One can find that for every random variable 0

.
E 0% 0 = (;,.’fi';ﬂé [ (@—t1)Fo () + 2,

where Fo(¢) is the distribution function of 0. Then the inequality £ 0% —0 ?:2A? be-

comes an equality if and only if P{6=0}=1 or P{0=T}=1, so that these two boun-

dary cases appear to be the worst ones in process of the linear minimax estimation.
Turn to theorem 2.2. Since W(7)=7—0 + eW(7) we get for 0*

272 T el

) = 7tae ~ T 0 ryae W)
' r .
por= Loy (E0+26)

When ¢— 0 (7 is fixed), from (4.1), we get 0% —0a.s, EO*— E0. Let 7 -0, e=T ‘
a>>1/2. Then

T2

pem)

and again from (4.1) we conclude 0*—0 a.s, £6* — E0. So theorem 2.2 is proved

AY=
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