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THE MULTIPLICATIVITY PROPERTY OF THE FIXED POINT INDEX
FOR MULTIVALUED MAPS . -

G. S. SKORDEV *

The fixed point index for multivalued maps has been defined by many authors [I,3, 6-13, 16-18].
The index defined in [16-18, 3, 6, 8] satisfies the commutativity and the mod-p property but it remains
unknown whether the multiplicativity property holds. An alternative approach to the fixed point index
for Z-acyclic maps of ENR-s is given in [6]. The definition is based on the fact that a Z-acyclic map
is homotopic to a single valued map after an appropriate embedding of the space into a sphere. In this
paper the uniqueness of the fixed point index for Z-acyclic maps on ENR-s is proved. From the
uniqueness it follows that the fixed point index has all the properties of -the index defined in [16] and,
moreover, the muitiplicativity one.

In the present paper we give an affirmative answer to the question about the multiplicativity pro-
perty of the fixed point index of F-acyclic (and some classes of nonacyclic) maps on ANR-s. This result
is obtained by some generalization of the chain approximations and A-systems introduced in [3].

I. A generalization of A-system of multivalued map

1. Block complexes [14, 134], [4, p. 126].

Definition. Let K be a finite simplicial complex with a fixed triangulation. An
n-block in K is a pair of subcomplexes (e, e) such that dime=n and (e, e,
F)=H/(B", B", F) (here B"is the n-dimensional ball and B" its boundary, F is a given
field).

The subcomplex e is called a boundary of e and the interior of e is the set e\e.

Definition [14, p. 134]. A block dissection t of a simplicial complex K with a
given triangulation t’ is a set of i-blocks of t" such that:

(a) each simplex of the triangulation <’ lies in the interior of exactly one
block of

(b) the boundary of each n-block is a union of m-blocks for m<Zn.

If in the simplicial complex K a block dissection t is fixed, we call K a block
complex with a block structure t.

Definition. The mesh of the block complex is mesh (K, t)=max {diame: e ¢t}
(in K we consider the metric defined by barycentric coordinates)

Definition. Let (K, t) be a block complex on the simplicial complex (K, 1)

’

and let 1, be a block structure of a barycentric subdivision t; of the triangulation 1’
The block structure t, is called a subdivision of the block structure t if every block
of 7, is in the interior of exactly one block of .

Definition. Let 1, be a block dissection of the triangulation 1. The sequence
{r,} of block subdivisions of 7, is called a fundamental sequence of block subdivisions
if the following conditions hold: a) 1., is a subdivision of 1, i=1,2,..., b)
lim mesh (X, t;)=0.

Let t be a block dissection of the triangulation 1. We denote by C, (K, 1) the
chain complex of the block complex t, with the coefficientsin the field F, [14, p. 136).

* Supported by Committee of Sciences, 48/1987—88.
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... the fixed point index for multivalued maps 161

Let M be a subset of K. We denote by St(M)= U{e€t: e M=} the star of
the set M with respect to the block structure 7. By induction St**}{(M, t)=
St(St&(M, 1), 7).

For a given block dissection T of the triangulation 1’ there is a unique chain
map b(t, 1') : Cu(K, 1) — C,(k, t') with the following properties:

(a) b(t, ') (a)=a for every vertex a of .

(b) carr b(t, t') (e)=e for every block e ¢t [14, p. 136—137].

Lemma 1. Let (K, 1), (L, n) be block complexes on the triangulations t' and
w. Let '

9 C.(K» ) — C*(L' u,)
be a chain map with a Kronecker index Klo=m, m¢F. Then there is a chain map
0 : Co(K, 1) — C«(L, 1)

and a homotopy D connecting the chain maps 0 and ¢b(t, 1) such that:

(a) carr O(e)c carr (ob(t, t') (€), n),
(b) carr (D(e), w) < carr (9b(z, ') (e), k)
() KI10=Kle.

Proof. This lemma is obtained by using the method of acyclic carriers (in the
case ¢ =identity it is proved in [4, p. 127-129], where the properties (a) and (b) are
not stated explicitely but they follow from the construction). The chain map 6 and the
homotopy D are defined by induction on the dimension of the block e. We confine
ourselves only to the case dime=0.

Let @ be a point of the block dissection t. Then a is also a vertex of the trian-
gulation t’. Consider the chain ¢(a)=ZAb; (b; are the vertices of the triangulation p’),
Klp(a)=ZX\;=m. The vertex b, has a carrier — the block e; in the block structure
Let ¢, be a simplicial path in e; (in the triangulation p’) connecting the point b, with
a vertex b, of the block e, Define 6, and D, by 6,a)=2X 46, and Dya) =Z g,
The maps 0, and D, satisfy the conditions (a)-(c). The maps 6 and D are defined by
induction following the construction in [4, p. 127-129].

Suppose 1, is a block dissection of the triangulation 1, and 7, is its block subdi-
vision (7, is a block dissection of the triangulation T, which is a barycentric subdivi-
sion of the triangulation t). There is a chain map (subdivision)

b(ty, 19) : Cy(K, 1)) — CK, 1),

defined by b(t,, 1,) (¢)=2Xe, where ¢, €1, dime,=dime, e;—e and the orientation of
e; is induced by the orientation of the block e.

The chain map b(t,, 1) is obtained also if applying Lemma 1 to the chain map
b(t;, 1,): CyK, 1)) — C(K, 1;), where b(t}, 1,) is the barycentric subdivision of simpli-
cial chains, [14, p. 115].

Let us consider the chain map x(t,, 1;): Cy(K, 1;)— Cy(K, t,). This is the chain
map induced by a simplicial approximation of the identity map id : (K, ©)—~(K, 1,).

Applying Lemma 1 to the chain map y(ty, 1,), we obtain the following chain map
2(te. 1)1 Co(K, 1)) = CK, t,) satisfying the conditions of Lemma 1.
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2. Chain approximations ofupper semicontinuous maps. For upper
semicontinuous maps (u.s.c. maps) see [5].

Lemma 2. Let ® : K— L be an F-acyclic map. Let {t;}, {u,} be fundamental systems
of block dissections of K and L, respectively. Let 1:,.,6?1:,-}, u, € {w}, n €N. Then the-
re exist k, 1, € N such that ky<<k,<<--- <Rpy,, Li<<ly<<---<l, For every block e ¢ 1,
there are [, ,(e)€¢ N and a point a(l)¢ K satisfying the following conditions :

(1) L <li(e)<ly,

(2) e <= St(a(e), ki),

(3) ®(St (e, &) = St(D(ale)), L—,(e))

(4) The homomorphism i,: H,(St(®(a(e)), I,_,(e))— Hy(St(®(a(e)), ;)
is zero.

Here i, is induced by the identity embedding i (St(M, i)=St(M, 1,) for McK
and St(M, i)=St(M, p,) for M L). Recall that the map ® : K— L is acyclic if it is u.s.c.
and for every point x ¢ K the compact set ®(x) is not empty and acyclic with respect
to the homology of Alexandroff — Cech with coefficients in the field F, [12].

Proof. By induction on n. n=0. The Cech homologies with coefficients in the
field F are continuous and are finite dimensional vector spaces over the field F for
finite polyhedra. The compact set ®(x) is acyclic. Then it follows that there exists
l(x) €N, [(x)>1, such that the identity embedding

i(x) : SH(D(x), 1(x)) =St (P(x) Lo)

induces the zero homomorphism in the reduced homology with coefficients in the

field F.
Since the map ® is us.c., then for every point x in K there is a neighbourhood

Ox such that
D(Ox)= St(®(x), Lo(x))
and diam Ox<38(ts,) where §(ts,) is the Lebesgue number of the covering
Sty ={St(e, ky): e €tx, dime=0}.

Let ®={Ox,, ..., Ox,} be a finite subcovering of the covering {Ox: x ¢ K}and k& ¢N
be such that Stt,, > and &,>&,.

For every block e ¢ 1s, there is Ox; € ® such that St(e, k)=0Ox,.

Let us define a(e)=x, and [,(e)=[y(x,;). The conditions (1)-(4) of Lemma 2 are
satisfied for n=0.

Let /, ¢ N be such that [,>max {{,(e): € € Ta,}-

Suppose that Lemma 2 is proved for every i<n. For i=n+1 the proof is the
same as for n=0 but in this case we begin with &, and [, instead of &, and /[,

Lemma 3. Let ® : K — L be an F-acyclic map. Let {x;}, {i;} be fundamental systems
of block dissections of K and L, respectively. Suppose v, €{t}, w € {n}. Then there

exist k¢N, k>k and a chain map
0 :Cu(K, k) —~Cu(L, 1)

satisfying the following conditions : for every block e ¢ v there is a point s(e)
such that
(1) e—St(s(e), k),
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(2) carr (€)= St (D(s(e)), 1).

Here Cy(K. i)=Cy(K, 7). Cu(L, )=Cy(L, n,).

Proof. Let us apply Lemma 2 to k=&, (=l n=dimK. We obtain %, [, ¢ N,
Ry<ky< oo < Rypy, lg<<l;--- <,y [;,(e) €N, a(e) € K for every block e ¢ 1, satisfying the
conditions (1)-(4) of Lemma 2.

We shall construct the chain map ¢ : C.(K, k,+,) = Ci«(L, {) by induction on the
dimension j. We denote by (K, k)Y’ the j-dimensional skeleton of the block
complex (K, T . ).

Jj=0. Let e be a vertex of the block dissection 7, . Let a be a vertex in the
carrier of the set ®(a(e)) in the block dissection u,_ . By setting ¢°(e)=a, s(e)=a(e)
we obtain a chain map

0% Cu(K, k) ) — Cu(L, 1)
for which the conditions of Lemma 2 hold.

Jj=1. Let e be an one-dimensional block of the block dissectiont, . . The carrier of the
block e in 1, is denoted by e. From Lemma 2 we obtain a point a(eA)(Ksatisfyingthe
conditions of this lemma. Moreover, since de=e¢;— eU:e:Ae we have

{ateo). a(e)}=St(e, k)=St(e, k).
Therefore ®(a(eo))bd>(a(e,))C¢(St (e k,)). From Lemma 2, (3) it follows that ®(a(e,))
U D(ale,)=SH@(a (@), L, (e).
Since 1,>1,_ (&)>1,_,, then ¢%e,) and ¢°%e,) are vertices in the block complex
St(@ (a(e)) l,,_,(e)) The chain @%e,)—9%ey)=¢°e is a cycle in the block complex
St (d(a( e)), I,_,(e)). From Lemma 2, (4) we obtain that the chain ¢°e is homologous

to zero in the block complex St (Q(a(g)), l,—,). Therefore there is a one dimensional
chain ¢ in this complex such that dc=¢°de
We define ¢l(e)=c, 9(b)=09°b) for every vertex b of Ts,,, and obtain a chain

map ¢': C,((K, k,+))'") — Cy(L, L, ) satisfying the following conditions: for every
block e in (K, k,;,)" there is a point s(e) ¢ K such that

e—St(s(e), &k, 1)

carr @'(e)= St (®(s(e)), Lp—1),
Klo'=1.
Suppose that the chain map o : C (K, k,4,)9) — CJL, [,_;) has already been de-

fined and satisfies the following conditions: for every block e ¢ (K, &,,,)? there is a
point s(e)¢ K such that

e=St(s(e), k,—;)
carr ¢/(e)= St (®(s(e)), L)
Kloi=1.
Let e be (i+1)-dimensional block in 7, .~ and e be its carrier in SR Let us
consider the chain de= Ze; (here e, arc i-dimensional blocks in 1, . ). By the induction
hypothesis s(e;) € St(ey, k,-,)=St(e, k,_,).
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From Lemma 2, (3) we obtain: ®(s(e;))=®(St (e, k,_;)) <= St(®(a( ej), Ly—i—y(€))-
Therefore

carr 0‘0e =St (D(a(e)), Ly (&)

Since l,_;>l,_;—, (€)>l,—;— then the block chain %(l,—i l,—i—y (€)) ¢’ e is a chain of
the block complex St(®(a (Z) ) N P— (¢)) and it is a cycle. It follows from Lemma 2,
(4) that the chain x(l,—;, Li—i—1 (¢)) ¢¢ de is homologous to zero in the block complex
St(®(a (eS), l,_;—) i. e. there is a chain c¢;4+; in this complex such that

Wiy byi1(€)) 90 =0, , .

We define ¢**'(e)=c.4y, s(e)=a(?) for an (i+ 1)-dimensional block e. If dime<i we define
o'+ (€)= xUp—i» Lp-i—1) @7(e)-
By definition @*': C (K, kps1)*V) — Cy(L, l,—;—,) is a chain map satisfying the
conditions
e=St(s(e), k,_i—)-
carr @i+(e)= St(®(a(e)), Ly—i—1)
K1giti=1.

Thus we construct the chain map ¢”. Finally we put ¢=09" k=k,,, Lemma 3 is

proved.
Definition. Let ®: K — L be a us.c. map. Let }(r,}, {u;} be fundamental sys-
tems of block dissections of the simplicial complexes K and L, respectively. The

chain map
Vi Cy(K, By —CulL, D)

is called (n, 1, W) or (n, &, [) chain approximation of the map @ if k=k and if for
every block e¢ 1y there is a point s(e) € K such that

(1) e=St*(s(e), k),

(2) carry/(e)=St"(®(s(e)), {)

((1, %, !) approximations we call (k, [-)-approximations).

Lemma 3 shows us that for an F-acyclic map ® : K— L k, [¢N there exists (&, ()
chain approximation of ®.

Lemma 4. For every j¢ N there exists k¢N, k=] such that if m,l, m, L, ¢N
and if the mappings

P, :C*(K- ) - C*(L’ l), Vv, :C.(K- m) — C&([" m)
are (I, l) and (m, m) chain approximations of the map ® respectively and m,=m:=l,
m, =1, =l=k = k, then there is a homotopy
D : C K, my)— Cy(L, 1)

connecting ¢, x(m,, 1) and y(m, l) v,.
The homotopy D satisfies the following conditions : for every block e ¢ 1y, there

is a point b(e)¢ K such that e=St(b(e), J) carr D(e)=St(®(b(e)), /).
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Proof. Let us apply Lemma 2 to k,=/,=j and n=dimK. Then we obtain the
natural numbers {&}, {{}, {{,(e)} and points a(e) satisfying the conditions (1)-(4) of

Lemma 2. Define 2=k, .
We shall construct the homotopy D by an induction on the dimension £.

t—0. Suppose o is a vertex of the block dissection t,, and oc=y(m, ;) (o) is a
vertex of 1, . Since ¢, is a (/, /) chain approximation of the map ® we have: there

exists a point s(c)such that
(1 s(c) €St (o, l)
carr @,(0)=St (®(s (o)), 1).
For the chain map y,— there exists a point s(c) such that
s(c) € St (o, m),
carr y,(o)= St (D(s(c)), m)
Obviously {s(c), s(6)} = St (o, /). Therefore
©) O(s(c)) U @ (s(0)) = D(St (o, 1)).

Let o be the carrier of o in the block dissection Thsyr Since [=k,,,, then from
(3) and Lemma 2, (3) it follows i

(4) D(5(0)) U V(s (5)) = B(St (0, kyny1))=St(D(a(0)), L, (o))
From (1), (2), (4) and Lemma 2, (1) we obtain
carr x(m, Dy,(0)=StAD(s(c)), [)=St(B(s(0)), L,—i)=StAD(a(0)), L,(3)),
carr 9,(0)= St(d(a(c)), 1,(0)).

Therefore the chain %(, 1,(0)) [¢,(0)—x(m, {)y,(o)] is a cycle in the block complex

Cu(St(®(a(0)). Ly(0)). 1, (0)).
From Lemma 2, (4) it follows that there exists an one-dimensional chain ¢, € C,

(St(®(a(0), L,), 1,) such that dc,=1(,(0), ) [9(0)—x(m. L)wi(o)].
Define D%o)=¢,, b(c)=a(c). Obviously
o =St (o, 1)=St¥b(c), {,),
carr D(o) = St(d(b(o)), 1,)-

(2)

(5)

t=1. Let o be an one-dimensional block in t,, and & be its carrier in 7;,. Then it
follows

(6) carr x(m,, 1,) (6) = o.
We denote by o the carrier of o in Ty, Since ¢, and v, are (/, /) and (m, m)
chain approximation of the map ®, then there exist points s(c) and s(¢) such that
s(o) € St (o, 1), s(o) € St( o, m).

Then {s(o), s(g)} < St(o, k,).
It x(m,, 1)) (6)=Xh0, then o,co. For every o, there is a point s(o,) such that
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(7) s(c,) € St(o,, [)=St(o, &,).
carr 9,(o,)c= St (®(s(c,)), 1),
carr ,7(my, 1,) (6) = St(®(St (o, &,), 1)
=St(SE(® (@(0)), Ly—1(5)), D= St (®(@ (0)): Ln—1(0))-
For the chain map y, we have
8) carry,(0)=St(®(s(0)), m)=St(®(St (0, &,), m)=St(St(@(a(0)), L (o). m),
care x(m, Dy (0)=St (St(D(a(0)), L,—, (5)). H=St2 (P (a(0)), L1 (o).

Let us consider the chain do=2\o, Here o, are zero-dimensional blocks in 1, and
o,=0. From the first step of the induction we obtain

carr D%(c,)= St (®(a(3,)), L,).
Here §; is the carrier of x(m,, ;) (o, in T, and 81:5. We also have

a(3,) € St(8, 1)=St(o, &,),
D(a(3,)= (St (0, k,)=SUD(@a(,)), Lai (),
carr D(a,)= St (St (® (a(0)). Ly () L)=SA(® (a(0)), Ly-1 (o)
Therefore
9) carr D(06)=St? (¥(a(0)), Ly—1 (0)).
From (7), (8), (9) it follows that the cycle
c =1l Lnry(9)) [01%(my, 1) (©)—x(mty DY(0)] = (Lps Lu—y (6)D°(90)

belongs to the chain complex C*(St’(o(a(c;)), l,,_,(c;)), l,,_l(c;)).
From Lemma 2, (4) we obtain that there exists a chain

¢y € Cu(St®(a(0)), L, ), L,—y)

such that dcg=x(l,—1(0), lp-1) (0)-
Define Di(o)=cy, b(0)= a(c), Dy=x(ly Lr1)D".

Thus the proof of Lemma 4 is complete.

3. Asystems—a generalization. Let K, L be finite simplicial complexes.
Let {t;}, {w;} be their fundamental systems of block dissections. Let ®: K — L be an
u.s.C. map.

Definition. The graduated set A(®) {A(®),:i ¢ N} where
A(®@),=hom (C(K, i), C«(L, D)

is called an approximation system (generalized A-system) of the map @ if there exists
n=n(A(®)) such that: :

(1) if ¢ ¢ A(®), then ¢=¢,b(,, k) and @, is (n, k i) chain approximation of the
map ®,

(2) for every i ¢ N, there is 7, =i such that if

mzlzi, o=0.b(, )¢ A(D), y=\y,b(m, m,) € AD),,
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then the chain maps ¢, x(m, [,) and x(m, l)y, ard homotopic with a chain homoto-
py D satisfying the following conditions: for every block & €1m, there is a point
b(o) € K for which

o= St"(b(o), i),
carr D(c)= St(®(b(c)), ).

Let U be an open set in the polyhedron K, such that U is a subcomplex in some
block dissection 7, of {r,}. Let ®:K-~ K be a usc. map. The triple (K, @, U) is
called admissible if x ¢®(x) for every point x € dU.

Lemma 5. Let (K, ®, U) be an admissible triple and A(®)—an A-system of
the map ® corresponding to a given fundamental system of block dissections of K.
The element

U, A®))=A((U, i)o)=3(—1Ytr (U, i)o),

of the field F does not depend on the chain map © for i sufficiently large i (here
0 € A(®), and n(U, i): C, (K, i)~ CU. i) is the natural projection, i=k.

This lemma is proved in [3, Lemma 2.3., p. 196-197] in the case when T are tri-
angulations. The proof in our more general case is the same.

The element /(U, A(®)) is called an index of the approximation system A(®) on
the set U. Obviously the requirement of U to be subcomplex in some block dissec-
tion 1, is not essential.

4. Induced A-systems. Let ®:K —L be an acyclic map, {r;}, {1 }-fundamen-
tal systems of block dissections of K and L, respectively. Let us consider

AX®),={o=0,b(, j): CuK, i) — Cu(L, i),

where ¢, is an (i, {) chain approximation of the map ®}.

It follows from Lemma 4

Lemma 6. A¥®)={A%®),: i ¢ N} is an A-system of the map ®.

This A-system is called an induced A-system of the map ® corresponding to
the fundamental systems {t}, {u:}-

Corollary 7. Let ®: K-—~K be an acyclic map. For every admissible triple
(K, @, U) it holds

i(®, U)=IU, AX(®)).

Here i(®, U) is the fixed point index defined in [3] and A%®) is the induced
A-system of the map corresponding to a given fundamental system of block dissec-
tions on K.

Proof. Let us consider Fig. 1 and the diagrams I, II, 1l The diagrams I and [iI

are commutative. The diagram Il is a homotopy commuting with a homotopy satis-
fying the conditions of Lemma 4. It follows from [3, Lemma 2.3, p. 196-197] that

A (U, iyo,b(t, t))= At (U, i )9, b, T))
The right side is /(U, A*®)) for i sufficiently large. The left side is i®, U).

Il. A-system for the product of two acyclic maps. Let ®, : K;— L, be F-acyclic maps,
i=1, 2. Let {t/}, {ni} be fundamental systems of block dissections of K; and Ly, res-

11 cn. Cepauka, ku. 2
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b(ti_rk) 0, ®(U, i)

Cu(K, ©) -—— > Cy(K, ) Cu(K, i) - C(U, )
| | ,
bt ) bt T)) | bt 1)) b(xi, t))
) bt ) o , CU, )
CulK, ) —— C K. ) — Co(K, v) ——— ‘
Fig. 1

pectively, /=1, 2. Let A*®,) be the induced A-system of the acyclic map @, i=1, 2
corresponding to the fundamental systems of block dissections.

Let us consider the map y= @ <X ®,:K, XK, L, XL, defined by w(x;, x,)
=®,(x,) < ®y(x,). The map v is F-acyclic.

Let us consider two block dissections r‘,;e{tj}, i=1, 2. We shall denote by 6,
=1} 12 the product block structure of K,xKj induced by 7, and t3.

It follows that {t}>?} and {u)xp7} are fundamental systems ol block dissections
of K, <K, and L, L,, respectively. We have

CK X Ky, t}.XT?):C*(K,. T})®C¢(K2' T?)

and the same formula for L, XL,

Let A¥(®,) < A%(®,) = {A*(®,), < A%(D,),}, where for (9, ¥) € A¥(@,), X AX(D,), (9,
W) 1 CoKy < Ky 1)) Cy(Ly> Ly, pi>p?) is defined by (9, V) (e,<ey)= (e, XX)w(eg)
for every two blocks e, ¢/, j=1, 2.

Lemma 8. A*(®D,), < A%(Dy), = A¥(D, X By),.

Here A*(®, < ®,) is the induced A-system of the acyclic map ®,X®, correspon-
ding to the fundamental systems of block dissections {t!>12} and {p!x<p32}, A¥®)) is

the induced A-system corresponding to {t/}, {w/} j=1, 2,
Remark. The chain map subdivision in A*®,<®,) is
(i, J) 1 Co(K 2 Ky 10X12) = Co(K X Ky 1)XT5)
and is defined by b,(i, j)=b(t}, T))X)b(z}, 7). While the chain map x,(/, N=x()x,
t,<1}) is defined by x,(i, j)=x(t), T)CM(T}, ) i-=J].
1. The multiplicativity property of the fixed point index for multivalued
maps on finite polyhedra

Theorem 9. Let ®,: K, —~ K, be F-acyclic maps, i=1,2. If (Ki, ®;, U;) are ad-
missible triples, i=1, 2, then (K, < Ky ®,<®,, U, XUy) is an admissible triple and

(D, < ®,, U, <Ug)=i(®,, U,)i(®y, U,).

Proof. Let ¢ ¢ A%®d,),, v A*d,), (& — sufficiently large). It follows from
Lemma 7 that

i(®, % Dy, Uy X Uy) = AUy % Us, k) (®w))-

Using =({, % Uy, k) (9Rw) = (n(U,, k)@)R(n(Us k)v) and the multiplicativity pro-
perty of the Lefschetz number, we obtain
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i(®y X By, U, X Up)= A Uy, R)Q)AR(Uy, k)W)=i(®@y, Uy)i(®q, Uy).

Remark. 1. With the same arguments we obtain
Theorem 10. Let ®,: K, — K, @, ¢ o (K;, Ky) ([8, p. 13]). Let @y: Ky—K, be
an acyclic map. If (K,, ®,, U,) and (Ky, @y, U,) are admissible triples, then

(@, X @y, Uy X Us)=i(®y, Uy) i (Do Us)-
Remark. 2. If ®,¢ o,(K, K,) we obtain in theorem 10
KUy X Uy, AX(®, X ®p))=i(®@y, Uy) i (®y, Uy).

IV. The multiplicativity property of the fixed point index for multivalued maps
on ANR-s. The fixed point index for acyclic (or for more general of the class (1, n))
maps is constructed in [3] ([8]). The construction uses appropriate chain approximations
of the maps and reduces this case to that of multivalued maps on a finite polyhed-
ron. This construction (in [3]) follows the same way if we use A-systems correspon-
ding to fundamental systems of block dissections instead of A-systems induced by bary-
centric subdivisions of a given triangulation. Therefore from theorem 9 we obtain

Theorem 11. Let ®;: X;— X, be F-acyclic maps of complete metric spaces
X, i=1,2. [If (X, ®, U) are admissible triples, i=1, 2, then (X;XXy @3 Xy,
U, < U,) is admissible triple and

l((bl X d’g. U] X Ua) =i(¢1. Ul) i ((DQ, Ug).

Remark 1. In [8] it is proved that the condition of completeness of the space
X, is not necessary to define the index. Therefore Theorem 11 remains true even,
if we omit this condition.

Remark 2. In Theorem 11 the map ®, might be of the class

o (X X) (8]
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