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A REMARK ON THE PROBABILITY OF DEGENERATION OF A
MULTIDIMENSIONAL BRANCHING GALTON — WATSON PROCESS

N. N. TARKHANOV, D. M. SHOYHET

This paper is aimed at obtaining the sufficient conditions for the probability of degeneration of
an n-dimensional Galton—Watson process to be less than 1 in the case when only the first terms
of the distribution law have been made use of.

Introduction. Let us have a time homogeneous Galton — Watson process {z*}%_,
where z* is a random n-dimensional vector; the ith component 2 of the vector 2*
can be interpreted as a number of the i-th type of particles in the k-th generation.
Let us denote by e the n-dimensional vector where the i-th component is equal to 1
and the remaining ones are equal to 0. For a=(ay,..., a,) let us denote by p! the pro-
bability which the i-th type particle will have ¢, 1-type descendants, ---, a, n-type des-
cendants if z°=e¢i. Obviously, S pi=1 (i=1,..., n).The functions pi(x)=Zapix® (i=1,
««s, n) are the generating functions of the process. Each of them is analytic in the
polycylinder U~={z ¢ C":|2;|<1} and continuous in U with the mapping p=(p",...,
P U=U.

Let ¢, be the probability for some & 2*=0 if 2°=e’. The vector ¢=(g;,.-., ¢,
is called a probability of degeneration of an n-dimensional Galton — Watson process.
It is known [1], that ¢ is the limit of the sequence {p(™ (0)}=_,, where p(™ are the ite-
rations of the mapping p, p'¥=p. Hence ¢ is the minimal (for each component) fixed
point of the mapping p: 11 —1I, where I1=[0, 1]>C -- X[0, 1] (n times). Note that al-
ways p(1)=1, where 1=(1,..., 1). One of the substantial problems in the theory of
branching processes is the case when ¢<I. The sufficient condition formulated by
Everett-Ulam’s theorem is well known [1].

Theorem 1. Let us assume that at least one of the functions pi(x)is non-
linear, the spectral radius of p'(1) (Freshe's derivative) is more than 1 and a cer-
tain power (p'(1)" has positive elements, then q<1.

However it will be difficult to apply the theorem to practice, because the functions
pi(x) are not given a priori. We have only their Taylor's coefficients { pi}, v Except
that these coefficients are known approximately only for some concrete problems.

The main aim of our paper is to formulate the sufficient conditions for the proba-
bility of degeneration to be less that 1 when only the first terms of the distribution
Jaw have been taken into consideration.

1. The probability of degeneration for one-dimensional branching process.
Let {2*}7_ be a one-dimensional Galton—Watson process, which begins with a single particle

and has an oﬁspringdistribulion{p,}.(N. where 0=p,<1 and yr p,=1. Let p(x)=X7,
.pax* be the generating function of the process for x¢[0, 1}
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In that case theorem 1 is obvious: ¢<1, if p’(1)>1. Note, that since all the
derivatives p™(x) =0 in [0, 1), there exists a limit p’(1)=lim.1_o p’(x). Evidently the
condition p’(1)<<1 may be replaced by the stronger condition XY k& p*>1 for the first
N coefficients of the function p(x), but it will not be very precise. The next theorem
shows what the condition for p,, ..., py should be so that p>1.

Theorem 2. If —po+2Y (1—py— -+ —p,)>0, then q<1. This condition is
exact. That means that if for the non-negative constants p, ...py we have XY_ p,
<1, py+0 and —p,+2¥ ((1—po— «+- —p,)=<O0, then there exists a process with the
following distribution {p,, ..., px Pys1, 0, +--}, where the probability of degeneration
will be g=1.

Proof. Since all the derivatives p(™(x) are non-negative on [0, 1), then neither
p(x)=x, nor p(x) will have more than one fixed point in [0, 1).

Let us have f(x)=(p(x)—x)/(x—1). Since this function is analytical in the unit
circle of a complex plane, f(x) can be represented by Taylor’s series f(x)= X7 cpx* in
the half-interval [0, 1). The equating of the coefficients of the series for p(x)—x and

(x—1) f(x) will result in cy=—p, and c,=(1—p,— -+ —ps), k=1. Thus,
f0)=—pot T (1=py— -+ —pa)e*

will be a function strictly increasing on [0, 1). We have f(0)=—p,<0.1f —o,
+ 2N (1—=py— +-- —py)>0, then according to the continuity

N
%)= =pot X (1=po— -+ —Pux;>0

for a point xg € (0, 1). Hence according to the Caushy theorem there is ¢ such that
0=¢<x, and f(g)=0. Evidently p(q) =g¢ and g<1.
Now let us have the non-negative quantities p, ..., py XN pe<1, such that

v,+0 and
N
"‘/’o‘*‘k:‘-;l(l‘—l’o“ o = pp)=0.

Let us assume that py,,=1—p, — ... —p, =0 and let us consider the one-dimensional
branching process with an offspring distribution law {po,--., py» Py+1> 0,...} The
polynomial p(x)=2XY"!p,x* will be a process generating function. As above, p(x)—x
=(x—1)f(x), where

N
)= —pot = (1=po— .. —Px"
=)

so that f(0)=—p,<0 and f(1)<0. Hence the only zero of the function f(x) may be
the point x=1. Thus g=1. The theorem is proved.

Remark. If p,=0, then ¢=0.

2. General case. Let us return to the general case- The aim is to give the con-
ditions for pf, |a|=N; (i=1,..., n), that should be sufficient to obtain a degenera-
tion probability less than 1. Naturally, these conditions generalize the sufficient ones
of theorem 2, but for n=2 they will not be minimal. B

Theorem 3. If —ph+270 (1=Sucapl)>0 at i=1,..., n, then q<1.

Proof. Let us denote s§=2Y_40!, so that s, =0 and B2  si=1 (i=1,..,n)
Consider the functions
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WE)= T g (k=1,....n)

given on the segment [0, 1]. That condition would mean

, N' s
—sh+ k.‘;‘.‘(l —si— -0 —54)>0

so with respect to theorem 2 for all i=1,..., n there will be such points g €0, 1), for
which ¢/(&,)=¢,. Since the functions /() are strictly down-convex, then the unequa-
lity @i€)<& (i=1,..., n) will be true for each §¢&; 1]. Hence, having chosen r,
max;<i<, &, <r<l1, get ¢i(r)<r for all i=1, ..., n. Thus, denoting a polycircular norm
in C" by ||z|'=max)<i<. |2/, we have

sup |p(2)||= max e@ir)<r.
lizlls” 1sisn

Thus according to theorem 2.1 from [2] there will be a s-fixed point ¢ of
the mapping p in the polycircle U,={z¢C":|z|=r}. Since the mapping p iterations
beginning from zero are non-negative, the components of the point ¢ will be also non-nega-
tive too. Hence, ¢<1. The theorem is proved.

Corollary. If 20+ Swm pl<l at i=1, ...n, then ¢<1.

Example. Let us have a Galton—Watson branching process with particles of
two types: A and B. Let the probabilities of A and B having no descendants be equal
respectively to 0,2 and 0,25; the probabilites of reproducing only one descendant of
the same fype are 0,44 and 0,12; and the probabilities of reproducing only one des-
cendant of the other type are 0,1 and 0,3 respectively. Then in spite of the remaining
distribution (which follows from the probabilities of reproducing two and more descen-
dants and mixed-type descendants) the probability of degeneration will be less than 1.
In fact, the corollary conditions: 2%0,2+0,4+0,1<1 and 2%0,25+0,12+0,3<1 have
been observed.
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