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A MINIMUM PROBLEM FOR A CLASS OF POLYNOMIALS
WALTER JANOUS

In this nole we solve a certain minimum problem. As an application we give an integral ine-
quality.

1. A new identity for binomial coefficients.
Lemma. Let k and N be nonnegative integers. Then

2

N 2
(1) S (?k+2p+l)(2k:p) =(2k+1)(2k+1y+l)
P=0

Proof. We keep k fixed and proceed by induction on N. For N=0 the identity
(1) is crearly true. Assuming the validity of (1) up to N, we have to show that

2k+N+1 2k+N+1)\2 k+N
(2k+1) ( V4 )’+(2k+2N+3)( ;+l+ ) = (2k+1) (2 ;+l+2).
i. e. that
L 2642N43 (k4 N+42P
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which is obvious.

2. Main result. Let » and & be integers with 0<k<n. Now we will determine
the minimum value M,, of

bf' (P A} d,

where P,, runs through the set of all polynomials with real coefficients and degree
at most n such that the coefficient of x* is 1.

Theorem.
Mu={Cr+n) (WP Y

Proof. We start by noting that the normalized Legendre polynomials L,, k=0,
I, 2, 3,..., transformed to the interval [0, 1] form an orthonormal basis of all poly-
nomials defined on [0, 1). By Rodrigues’ formula we get the representation
V2k+1
k1

Ly(x)= (di')‘(x’—-x)", k=0,1, 2, ...

(See for instance [1], p. 183).
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Clearly degL,=k. We now put P,,,k(x)=2;.‘:0 a;L(x), where a, a, @, ...a,€R.
Then
1 n
(@) [{Pralx)Pdx= X a’=min!
0 j=0

From

NN d il ol T e STE1Y (1) (2-n! i—p
Li(x)= j! (dx)jp:()( 1)(p)xl N ‘/“j+1,,"=o( I)P![(l'—P)!]’xj

we get that the coefficient of x* in P,, equals

n . — (j+A!
) 1Y)k \J¢ [ —
©) At AR VA T 1
This result shows already (in view of (2)) that
AQy=0a,= ...0p=0.
Furthermore, (2) and (3) yield the function
¢ : (!
— N g2 D _ —k___ -
Rag .- an ) Jun 3 . (,;,,a’{ Y mmwr D
to be minimized.
aoF . i
But E:T,ZO' j=k, ..., n imply
1 oy m— (JHR)! -
(4 a/‘=72‘;‘(_ 1y k\zj'f‘l(‘jik)![kg]z' J=Ryeen bl

Hence, via (3) we get

Looa +BE
o r 2D Gy ey b

26\ 3 o (RN,
(%) EACADN =2
This and the lemma immediately lead to
. n+k4+1\2 2k \2,_
(5) r=2(k+1) ("5 ) (5 )

As the matrix corresponding to the second derivative of F is positive-definite (subject
to condition (3)), F attains minimum at the values given by (4) and (5). Finally, via (2)

el h o o LRI
Mua=2* = = CIED (G omrEey

=2 ke (PR ) =tk (Y (B

3. An integral inequality. As an application of the above theorem we prove the
following
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Corollary (see [2]). Let m, n be nonnegative integers. Furthermore,let f:[0, 1]
—R be n times continuously differentiable, f*(0)=f®(1), k=0, 1,...,n—1 and
[\x/f(x)dx=0, j=1, 2,..., m. Then

([ JOdxP = 2n+ Vi iy /)P,

~ Proof. Let Q be a polynomial such that Q(0)=1 and deg Q<. By the assump-
tion on f we get (via n times partial integration)
1

Uf f(x)dx = 0} fO)Qx)dx=(—-1)" o{ FA(x)Q,(x)dx,

where Qi(x)=Q(x). By Cauchy—Schwarz’ inequality we arrive at

©) (] fix) dxps [lQA0P (o,

Now, Q,(x) is a polynomial such that deg Q,<m+n and the coefficient of x" equals 1.
By the theorem we conclude that

1 | ''m!
JQUP dx= My ={(2n+1) (0 (B fy = @ 1) [ e

This and (6) yield the desired inequality.
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