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AN EASILY COMPUTED UPPER BOUND FOR
THE CONDITION NUMBER OF A MATRIX

WLADIMIR POPOV

We introduce an easily computed characteristic of non-singular matrices: w(A) '(”_12‘1?, "

/ ldel(A);' " and show that it can be used to obtain: 1) an upper bound for ks()— Ala: A-1]ly;
2) additional information concerning the singular spectrum of A (when some other estimate of k,(.A)
is known).

The condition number of a non-singular n by n matrix is defined as &(A)= A
J A7 where |- | is some matrix norm. (We shall denote by &,(A4), ky(A), and k.(4)
the condition numbers corresponding to |- |,, |- |, and |- respectively.)
Following inequalities are well known (cf. [3]):
‘x*—xlr _llb*—b

(1 X kA for Ax=b, Ax#=b* x 0,

¥ —x || A*

@) = Ut KA) for Ax=b, Ax*=b, x=0.

Therefore the knowledge of &(A4) provides valuable information about the reliabili-
ty of the solution of the linear system Ax -6 when A or b arc perturbed. However,
the direct computation of k(A) is time consuming (((n®) for k,, k, and k..) and is usu-
ally not adjustable in computational practice.

In some cases estimates of k(A) can be obtained (at the rate of O(n?) extra opera-
tions) as a by-product while solving Ax-—b. A good algorithm for estimating %,(A)is
discussed in [1] and (2], and implemented in the LINPACK package. The estimate
obtained by this algorithm is a lower bound of &,(A) and gives a reliable indication
of ill-condition. It nust be pointed out, however, that the assertion of its being close
to k,(A) is probabilistic and a matrix can not be proved to be well conditioned using
this estimate.

In this paper we consider the characteristic

3) wW(A)=(n"? },;‘c;')"’/( o),
1 1

where oy,..., o, are the singular values of A.

When Ax-b is solved by direct methods using triangular factorization (Gauss,
Cholesky, QR etc.) w(A) is computed at the rate of O(n?) extra opecrations and can
be used to obtain:

1) an upper bound for k,(A);

2) additional information concerning the distribution of the singular spectrum of
the matrix (when another estimate of £(A) is known).

[.et us recollect some classical results which will be used later:
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For any real n by n matrix A there exist two orthogonal matrices U and V and
a diagonal matrix X=diag(o,,..., o,) such that

(4) A=UV7, 6,063 ...=0,0.

This singular value decomposition is unique and o2, ..., o2, are the eigenvalues of AA”,
If A is non-singular, then

(5) o= Alla ©,=| A_li'z_l' ky(A)=ocy/c,

Now let 4 be a non-singular matrix and let w(A) be defined by (3).
Theorem 1.

(i) wA)=1,

(i) w(A)=(n""Za})"?/|det(A) 1m,

Proof: (i) follows from the quadratic-geometric mean inequality.
(ii) Since i;=o0},..., A,=0o2 are the eigenvalues of AAT:

Lo?=Xh,=tr(AAT)=Xa;, (Mo;P=Tk;=det(AAT)=det?(A).

The computation of g}, takes n* additions and n* multiplications and det(4) is
obtained by O(n) multiplications from the triangular factors in which A is, may be
implicitly, decomposed when Ax=¥& is solved by direct methods. Thus the calculation
of w(A) instead of executing the algorithm of [1] (requiring about 572 operations) can
provide considerable saving of time, especially for small values of ». It is particularly
advantageous on specialized computers (array or matrix processors, multiprocessor
systems); in this case the computation of w(A4) amounts to several vector operations
and can be performed simultaneously with the factorization of the matrix. Now we
are going to give an upper bound for ky(A) in terms of w(A).

For x=(x;,..., x,), x,>0 let us denote: my(x) = (n'Zx%)"2, m,(x) = (Tlx,)V,
W(x) = my(x)/my(x).

Lemma 1. Let x=(x\,..., Xpim) X,>0, n, m>1

X = (e Xk X = e X ooy iUl ey Jud = {1 2ees n 4 m)
Then w(x) = w(x")"tm (x"ymm+m the equality being reached iff mg(x')=my(x")

n+m
Proof: (i) my(x)=( TT xp)V0+m=mg(x")/n+m me(x"ymintm
k=1
. “1% m 1% 2
(i) my(x) = (ni'ﬁ(lz ‘;‘T..rf‘)+"+m (m—! )f .\';‘))"
((n ! £ X2 yndm (m! g -Y}.)"""'*”")' 2= mo(x" ) Em) (" ymi g m),
1 e 1
The inequality follows from the Bernoulli inequality: pa+(1—p)b ~a*b'—» for
a, b0, 0—~p-.1 where the equality is reached iff a —b.
Theorem 2. Let A be a non-singular nby n matrix, w-—w(A), k=Rky(A). Then
R W'+ (w—1)"2

Proof: (i) n=2; in this case & is uniquely determined by w:

y 1 '
w? = l‘ (0] +03)/0109 = (0,/04+0,/0,) == 1, (k+1/k)
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and k, 1/k are the roots of the quadratic equation x2—2w?x+1=0, i, e. b=+ (w'—1)"2
(since &2=1).
(il) n>2; as in the case n—=2 it can be seen that

(6) k=w(o,;, 6,2+ (w(o,, o, —1)"?

and has its maximal value when w(s,, o,) is maximal. By Lemma 1 and Theorem 1 (i)
w(o,, 0,7 . WGy, ..., 0, ("D <7, w(0,, ..., 6,-,) -1 consequently

(7) w(o,, o,)—w">

Now the assertion of the theorem follows from (6) and (7).

Note that, although it is reached for singular spectra of the form o= ...cﬁ_lzc,
c$=¢‘+c(l—l/w‘-"’)“2, ol=c—c(1—1/w")'? the upper bound given by Theorem 2 will
be a severe overestimate in most cases when # is large. Therefore the calculation of
a large w(A) does not mean that A is ill-conditioned. A small w(A), however, provides
the full guaranty that A is “good”. In a series of numerical experiments w(A) was
calculated for several hundreds of matrices, generated at random from different distri-
butions. The most probable values of w(A) were in the range 1.6 to 1.8. This means
that, for most matrices A, the estimate kyA)=2w"(A) proves A to be:
for n-=50 — mnon-singular with respect to the standard double precision (56 bits);
for n--30 — non-singular in single precision (24 bits) and well conditioned in double
precision ;
for n==20 — well conditioned in single precision.

(Remember that the time-saving from calculating @(A) instead of using the LINPACK
algorithm for estimating k(A) is significant just for small values of n).

For n>>60 the estimate of Theorem 2 is usually impractical and some other esti-
mate for £(A) must be used. Nevertheless, the computation of w(A) in this case may
also be helpful, providing additional information about the structure of the singular
spectrum of A. Suppose we have two 1010 matrices A, and A, with the singular
spectra o(A)=(1,..., 1, 10-%) and o(Ag)=(1, 1075..., 107°). Since ky(A,) = ky(Ag)=10°
they are both singularinsingle precision. On the other hand, they are quite different: A,
is approximately equal to a singular matrix of rank n-1, while A, is “nearly singular”
of rank 1; i. e. the linear system A,x=06 is much stronger overdetermined than A,x=b.
Some information about the “rank” of a nearly singular matrix can be used to choose
a specialized algorithm for solving ill-conditioned systems, or to provide some probabi-
listic estimates for the propagation of errors in A and 6. Such information can be
obtained (when %,(A)=ac,/c, or its estimate is known) from the characteristic w(A) in
which all singular values of A take part. Thus, in our example, @(A,)= 3.78,
w(A,)=79432.87. Next theorem gives upper and lower bounds of w(A) for fixed ky(A)
and an estimate of the number of “small” singular values in o(A).

Lemma 2. Let ay, a,,..., a,, be positive and let flx)=w(a,..., a, , x)
— (Y (x2+Xa?) A xMa,)~V" for x=0 then

i) f has its minimum in x,=mya,, ..., a, )=((n—1)"Za})"?

ity f is decreasing in (0, x,) and increasing in (xq + )

Proof: Let us denote a=X7la? b=T1"lal E=x* and consider the function

g(E)=n" f2"(x) = (a+&)"/bE.

Obviously f is increasing (decreasing, has a local extremum)in x if and only if
g is thus in &= x%

6= (-1%-a)
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has (for £>0) a unique zero in & =(n—1)"'a=may, ..., a,_)

For £<&,4(%) is negative, and for £>&, — positive, q. e. d.

Theorem 3. /f A is a non-singular nXn matrix with kyA)=c>1,(1+c?)/2c)""
~w(A)=(1+(c2—1)»)"2c*, where »=max (n™', (21n(c)~t—(c2—1)7).

Proof: We can suppose that the singular spectrum of A is of the form c=0,=0,
=, -g,=1. (If not so, we can multiply A=U7diag(o,,..., 6,)V by D=diag(c;,",
..., o, 1), obtaining B=DA with £ky(A) = ky(B), w (A) = w(B), o(B) = (c, 69/Cp

. 010, 1))

By Lemma 1

wW(A) = w(0y, - .., O )V W(Ty, 6,) M =Wy (0, 1)m=((1 +2)/2¢)tn,

which proves th» first inequality. (Lemma 1 also implies that this bound is reached
for 63— ... =0,=27(1+cH))"").

To prove the upper bound we first observe that, as a trivial consequence of
Lemma 2, the maximum of w(A) (for fixed ¢) is reached for some singular spectrum
of the form

®) o®W=(,..., ¢, 1,..., 1.
———— | — et
k times (n—k) times

In this case w(A)=w(c®)=(n"Yke*+n—Fk))2c—*n.
Now consider the function

flr)=(1+(c2—=1)r).c—2~
Obviously f(k/n)=w*c'®) and w@(c*?)=w(c*?) if and only if f(k,/n)=f(ky/n).
) =[(c2—=1)—(1+(c2—1)%).21n(c)].c—>*

has a unique zero x,==1/21n(c)—1/(c2—1) in the interval (0, 1). f’ is positive in (0, %)
and negative for x>x, thus f(%,) is a local maximum. Consequently w(c®)) has its
maximum in [nx,] or [nx,]+ 1. For %,=<1/n this can be only [ax%,]+1=1, q.e.d.

For n>1, c<1 let us consider the function

(9) Wy (x)=[n""x(c2—1)+ 1], c—/n,

The proof of Theorem 3 implies that W, (x) is a convex function in [1, n] which
has its maximum in x,=n/21 n(c)—n/(c?—1).
If Ais a nxn matrix with kg(4)=c,

d Wn.z(xo)\“’(A)z 1= Wn-c(")
an
w(A)=W,(§) for some &¢ [xo, n].

Let us call this & the pseudorank of A and denote it by pr(A). The calculation
of pr(A) for a “nearly singular” matrix A gives some information about the dimen-
sion of the subspace of R" over which A is “well conditioned”, i. e.about the number
of those singular values of A which are “large”. In the particular case when o(A) is
of the form (8), where ¢ is large enough to provide n/21n(c)—n/(c*—1)=k, pr(A)=k.

On the other hand, if w=w(A) and some estimate » for pr(A) are known, the
equation

(10) w=W,p)

can be used to obtain a more realistic estimate of ¢ = /ky)(A).
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Suppose, for example, that w(A)=2.0 has been computed for a 2020 matrix A.
Theorem 2 gives the upper bound 2.220=~2.10% for ky(A). If, however, it is known that
pr(A4)=18 (if, e. g, three rows of A are nearly parallel), (10) can be solved for ¢
with @-=2, p=18 to obtain the much stricter bound ky(A)=1735. Next lemma pro-
vides the basis for such estimates:

Lemma 3. Let A be a nxXn matrix, w=w(A), p==pr(A), and let ¢ be a solution
of (10). Then ky(A)-=c.

Proof. Let c,=ky(A)and p,=pr(A). Then w= W, (p,)and. since p =p, =(n/21n(cy)
A.n,,’(q‘—l). we have W/,,_[l(p,) -V(/Ml( p)-

Now let us suppose ¢,>c. The definition (9) of W/, implies that, for fixed » and
x>0, W, (x) is increasing by ¢ in the interval (1, +->) and thus

W= Wn-tl( [’1)‘ - Wmtl( /’)> Wn‘t(p): w
what is absurd. Consequently ¢,<c.
Lemma 3 can also be used to obtain “conditional” esimates of %(A) of the form
“pr(A)=~n—1 and k(A)<c,” or “pr(A)=n—2 and k(A)<cy ...,

where ¢y, ¢y, ... is a(rapidly) decreasing sequence of numbers.
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