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NOTE ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS WITH
QUASICONFORMAL EXTENSION

SHIGEYOSHI OWA, VLADIMIR MICIC, MILUTIN OBRADOVIC

By use of some results due to H. Silverman [7] and J. Brown [l] some conditions, suf-
ficient or necessary and sufficient, for a function f from certain subclasses of univalent functions, that
provide the belonging of f to the class of functions with quasiconformal extension, are obtained. Fur-
ther on some distortion inequalities are proved.

A fractional calculus was developed by Owa in [5, 6]. In the final chapter of the paper some
estimates of the fractional integrals and fractional derivatives of functions having quasiconformal exten-
sion, studied in the previous chapters, are obtained.

1. Introduction. Let A denote the class of functions of the form
(1.1) f(z)=2+ gza,,z"

which are analytic in the unit disc U. Further, let S be the subclass of A consisting
of functions univalent in U.
A function f¢A is said to be starlike of order « if and only if
zf" (2)
Re { 15 }>a
for some a, 0<<a<1, and for all z¢ U. We denote by S*(a) the subclass of A con-

sisting of functions which are starlike of order a in U.
A function f¢A is said to be convex of order « if and only if

zf" (;
/' (2)

for some «, 0<a<1, and for all z¢ /. Also we denote by K(a) the subclass of A
consisting of all functions convex of order a in U.

We note that f(2)¢ K («) if and only if zf’(2)€S"(a) and that S*(a) < §°(0)-- 5",
K(u) < K(0)=K, for 0sa<1,

Let 7" be the subclass of A consisting of functions of the form

)}\u

Re {1+

(12) flz)=z- fv.’z a2 (a,=0).

We denote by 7*(a) and C(a) the classes 7 (a)=S"(a)N 7, Cla)=K(a) T.
We begin by recalling the following lemmas due to H. Silverman (7).
Lemma 1. If the function f, defined by (1.1), satisfies L7 ,(n—a)|a,|=1—a
for 0=a<1, then f¢S*(a).
Lemma 2. [f the function f, defined by (1.1), satisfies £ n(n—a)|a,<1-—-a

for 0sa<1, then f¢ K(a).
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Lemma 3. The function f, defined by (1.2), is in the class T"(u) if and only if
(1.3) }EQ(n—a)a,,sl—a.

The result (1.3) is sharp.
Lemma 4. The function f, defined by (1.2), is in the class C(a) if and only if

(1.49) E,, n(n—a)a,<1—a.

The result (1.4) is sharp.

2. Quasiconformal extension. f is a K-quasiconformal mapping (I <K<+ o) of
a domain D=C if it is a sense-preserving homeomorphism of D, absolutely continuous
on almost all lines parallel to the coordinate axes and

2.1 f-|=k|f.| a e inD,

with k=(K—1)/K+1) (i.e. K=(1+Rk)/(1—k)).

We say that a function f is in the class S, if it is in S and has a K-quasicon-
formal extension on C (cf. [2, 3, 4])

We need the following lemma, due to J. E. Brown [1].

Lemma 5. /f the function f, defined by (1.1), satisfies

k—1
k+1

2

)| =

(22) ,.Ez (n + =

-

for 0sk<1, then f¢S" N Sy

k
Since f¢ K if and only if zf'(2)€S", replacing a,| with n|a,| we obtain the fol-
lowing lemma.
Lemma 6. If the function f, defined by (1.1), satisfies

¢ ha k—1 ., | <
(23) ,,Eg ’l(ﬂ+ *k*_;l“)] a,, |= T—}-‘

for 0<k<1, then fEKN S,
We denote by T, the subclass of S, with members of the form (1.2)._As simple
consequences of lemmas 1-6 the following propositions and assertions follow.
Proposition 1. If the function f, defined by (1.1), satisfies the inequality

(2.2) for 0<k<1, then fQS‘(_:-:::—)nS,,.

Proposition 2. If the function f, defined by (1.1), satisfies the inequality
(23) for 0<k<1, then feK(77¢) 0 Se

AL The fanction f, defined by (12), is in the class T'(q75) N Ty if and
only if

by k—1 _ 2k
(24) AX:(N +—F+_l—)a"$' 14k °
where 0k 1. Equality in (24) is attained for
or N 2k n
(2.5) f@=2— Gitwesm-1 2 (n=2).
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A2. If the function f, defined by (1.2), is in the class T* (»%)n T, with 0<k
<1, then

. _ 2%
%8 0= (n 1)t (n=1)’

Equality in (2.6) is attained for f given by (2.5).
A3. The function f, defined by (1.2) is in the class C( 1+l )ﬂ Ty if andonly if

(n=2).

2k
(2.7) Z n(n+ k+l) " STk
where 0<k< 1. Equality in (2.7) is attained for the function

2k

Ad. If the function f, defined by (1.4), is in the class C(Tl%)n T, with 0<k
<1, then

: 2k
(2.9) A= pnt Dkfia=1)) ° (n=2).

Equality in (2.9) is attained for the function y given by (2.8).

3. Distortion inequalities.

Theorem 1. If the function f, defined by (1.2), is in the class T‘( l+k )n T
with 0<k<1, then

(31) (3k+|)z‘ lf(l)l\|2|+ (pk+l) z
and
(32) (ufl)- ‘/(Z)] M-}l)z
for z¢ U. Equalities in (3.1) and (3.2) are attained for the function

y 2k
(3.3) f(2) "z"'(3k+l )22

Proof. By Al we obtain
3k+1 by o k—1 . 2k

(3'4) ( k-:l ) nz’l all. ‘”3‘2 (” + k_*_l‘)an."'l';'k
or
p - 2k
(3.5) nan,.-. T

Therefore we have
7 ¥ 2k
[f@=]z|—|z[" T ay=|z] —(gp)zl
and
If(@)|s|z|+]22 £ a,<|zl+ ()| 2
amg N k417



Note on certain subclasses of univalent functions 235

In order to prove the second part of the theorem we need

3k+1 o 29 k—1 %
2(k+1) ’I;‘:z nanbniz(” = k+1 )an"f 1+% °
that implies
i _ 4k
(36) }: na,= 3+ .

From (3.6) the desired estimations
’ i~ | o . 4k
f(:);,,l—]zi"-ina,,: I —(g57) 2

and

= 4k

[ (@)=1+]z] L na,= 1+(W)|2}
follow.

Corollary 1. Let f, defined by (1.2), be in the class T‘(:‘;:)n T, with 0<k
< 1. Then the unit disk U is mapped by f onto a domain that contains the disk
| w|<(k+1)/(3k+1).

Theorem 2. If the function f, defined by (1.2), is in the class C(

with 0<k<1, then

1—&
1+k INT,

(3.7) |z —(ﬁiT)fZI’v\!f(z)'f;!z '*‘(;;—,e,:_—l)izfa
and
3.8) I— (e 2]S £ @IS+ Gap 2|

for z¢U. Equalities in (3.7) and (3.8) are attained for
k
(3.9) f@)=2—(g37)2"
This theorem can be proved by the same manner as Theorem 1.
Corollary 2. Let f, defined by (12), be in the class C(-;5 ¢ )N Ty with 0<k

< 1. Then the unit disk U is mapped by f onto a domain that contains the disk

|w|<(2k+1)/(3k+1). ) LY
4. Fractional calculus. The following definitions are due to Owa [5, 6].
Definition 1. The fractional integral of order & of the function fis defined by

s f(gy ot [ SO
D7 fe)=ry [ P g,
where &0, f is analytic in a simply connected region of the z-plane containing the

origin and the multiplicity of (z—£)* ' is removed by requiring log(z ~{) to be real

when z ;-0 )
Definition 2. The fractional derivative of order & of the function f is defi-

ned by

1 d I 1§
D=5y s { g

16 Cn. Cepanxa, xn. 3
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where 0=0<1, fis analytic in a simply connected region of the z-plane containing
the origin and the multiplicity of (2 {)~® is removed by requiring log(z—C) to be
real when z—C 0.

Definition 3. Let n¢N,={0, 1, 2,...}. Under the hypotheses of Definition 2

the fractional derivative of order (n+6) is defined by
D"“‘f(Z)—— D f(2).

Theorem 3. [f the function f, defined by (1.2), is in the class T*
with 0<k<1, then

l+k)nr

|z |18 4k

(4°1) ‘Dz Gf(z)f‘T(z—_’_o_)_(l— (2+b)(3k+l) Izl)
and

¢ —8 | < |Zjl+5 _.__;4_ |
(42) ID: f(z)\;"r(—-z_:;,T(l + (248)(3k+1) ‘2.‘)

for >0 and z¢U. Equalities in (4.1) and (4.2) are attained for f given by (3.3).
Proof. Note that
T C(n+1)[(2+8)

‘ —8 —8 — vy g a
[(2+8)27° D2 f(2)=2— X ““rolity) a2

Setting G(n)=T(n+ 1)[(2+8)/T(n+1+3) (n==2), we have
(4.3) 0<G(n)<G(2)=2/(2+3).
It follows from (3.5) and (4.3)

| - s ~ —|z|— 4
F(2+8)z 8D 3 f(2)|=]|z| (1(2)[2|’ a | 2] @royahET) | 2
that gives (4.1) and
8 8 | < - 4k S—
TR +8)2 ° D f2) =] 2| +G(2) |2 | : 6,512 +grparn 2

that shows (4.2). Finally, equalities in (4.1) and (4.2) are attained for f defined by
+8
D.* fz)- r(z+o, ( _(2'41?):‘(?&17)2)'
that is, defined by (3.3).
Using (3.9), we can prove
Theorem 4. If the function f, defined by (1.2), is in the class C(*‘)fl T
with 0<k<1, then

+8 2%

and
[ 8 2k
(45) |07 f2) |5 s (1 + iy |2

r(2+°)



Note on certain subclasses of univalent functions 237

for >0 and 2¢U. Equalities in (44) and (45) are attained for f given by (3.9).
Theorem 5. If the function f, defined by (12), isin the class T'(-re) (1 T,
with 0<k<1, then

) s 1k
(4.6) |Dif(2)| = r(z 3) (l e=sxars 12D
and s

1k 4k
(4.7 1D @) == (0 +5= sorsn 121

for 0<8<1 and z¢U. Equalities in (46) and (4.7) are attained for f given by (3.3).
Proof. It follows from Definition 2 that
) < T(n+1)r2-s " - .
r2-98)z°Dif(2)==2 - —'H;’Ei(_s) ) a,"=z— }EQH(n)na,,z A

—
=2

where /{(n)=T(n)[(2—38)/I(n+1—38). Since 0<H(n)<H(2)=1/(2—38), by using (3.6)
we have

, . o 4k
\T(2—8) 2 Dif (2)|=|z|—H(2)|z ? ”-‘;2'lanr3 2|~ (2

that proves (4.6), and
. o . — 4k ;
r@-8)20Dif ()52 +HQ) |2 T nay=|z|+ g2,

that proves (4.7). Further, it is clear that the equalities in (4.6) and (4.7) are attained
for f defined by

4k
D°f(z)"—r(2 5 U —a=sarsn 2
that is, defined by (3.3).
Using (3.9), we can prove
Theorem 6. If the function f, defined by (1.2), is in the class C(—:;—:-)n Ty

with 0<k<1, then

" _ lzll—v& %
(4.8) | D f(2)|= =gy (1 —@=syak+n 2V
and
2k
(4.9) Dif(2)|= r(z -5) -1 ta= —8)(3k+1) 21)

for 0<.6<1 and z¢ U. Equalities in (4.8) and (4.9) are attained for f given by (3.9),
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