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ON THE LOCAL SOLVABILITY
OF HYPERBOLIC OVERDETERMINED SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS

JORDAN B. TABOV

1. Introduction. Overdetermined systems of partial differential equations (OS PDE)
and the problem when they have a solution have been the subject of attention of
many mathematicians. Among well-known classical results in this field we can mention
the Frobenius theorem and the Cartan — Kihler theorem.

A classical theorem of I. Pe trovskii, proved in [6], ensures the solvability
of smooth systems of PDE in the case when they are hyperbolic.

We consider overdetermined systems of PDE of the form

ou ou ov
bi‘=F(xl' X o op O )

ov du dv
aa= 0 2 e g 00 T W)
(1)
{ ow ou dv
d.r—l-__H(x" X2, xi’ oxt’ u, o, u.')
ow ou ov
oxt =K(x', &% G e T @)
in which #, v and w@ are unknown functions of x' and x? and F(x', X% ..., x7)

= FAx), G(x), H(x) and K(x) are smooth functions of their arguments.

Besides the definition of hyperbolic systems of the form (1), the present work
contains a proof of their solvability. We should note, that all considerations and re-
sults are local.

1. Hyperbolic Pfaff systems. Each Pfaff system of the form

(2) of (dx)m=oldx'+. - +of dx"=0, i=1, 2, ...,n—4

of rank n—4 determines a 4-dimensional plane 0(x) in each point x. We shall call
0=0(x) a 4-dimensional distribution.

Definition. We say, that the distribution 8’ =0'(x) is resolving for the system
(2), if 0'(x) is involutive and at every point x the condition 0’0 is satisfied.

Until the end of this section we shall assume, that the system (2) has no non-
zero characteristic (see [7]) vectors.

We call a point y singular for the system (2), if there exist three linearly inde-
pendent vectors &, & and & from 0, such that at y the equalities

o (Bp EN)=0, I=1,2...,n—4; j, k=123

hold. Until the end of this section we shall assume that the system (2) has no sin-
gular points.
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Definition (E. Cartan). The system (2) is in involution with respect to the
2-dimensional distributions (in other words, has property 12), if for every field &(x)
—0(x) the rank of the system

o (n)=0, do' (& n)=0, i=1,2,...,n—4

where n is vector argument, does not exceed n—2.
Denote by ©,(y) the linear operator in 6(y), determined by the equality

(Q,(») & n)=00'(§ n)

for every & n¢0(y) (the scalar product is the same as in R"). Similarly, we define
Q(y), i=1,2,...,n—4.

Let a=(a!, a2, ..., a**) be a vector of the arithmetic space A"~* Consider the
operator

n—4
Q(y)=x a'Q(y)

and denote its kernel by E,(v). We call the vector a regular for the system (2) at
the point y, if det Q?(y)=0.

Definition. The system (2) is called hyperbolic at the point y, if it has
n—4 linearly independent regular vectors at y.

The following result holds (see [8]):

Theorem. If the system (2) has property 12 in a neighbourhood of x, and is
hyperbolic at x,, then in some neighbourhood of this point the system (2) has a
2-dimensional resolving distribution.

3. Hyperbolic systems of the form (1) and their local solvability. The follo-
wing Pfaff system corresponds to the system (1):

o' (dx)= Fdx'+ x*dx?—dx® =0
3 02 (dx) = Gdx' + x‘dx? —dx* =0
o (dx) == Hdx*+ Kdx®—dx"=0.

It is a special case of the system (2). According to E. Cartan, the system (1) is said
to be in involution, if (3) has property 12.

Definition. The system (1) is hyperbolic, if (3) is hyperbolic and moreover
has the property 12.

According to the definition from Section 2, the condition for the hyperbolicity
of (2) is based on the properties of the quadratic form g(a),

q*(a)=det (a) Q, +a” Qy+a’ Q).
In the case of the system (3), this becomes
gla) = det @'0,F + a?0,G+ a*dyf  a'0,F+a*d,G+a’d H )
a'+a*oyK a’+a* K

Hence the hyperbolicity of (1) is equivalent, when d, £ +0, to the condition that it is
involutive with g(e) non-semi-definite.

Theorem. Every hyperbolic OS PDE of the form (1) is locally resolvable.

The idea of the proof is based on the application of the theorem quoted in Sec-
tion 2. Indeed, the Pfaff system (3) corresponding to (1) is hyperbolic and consequen-

tly it has a 2-dimensional resolving distribution 0’(x) in a neighbourhood of x, Due
to the definition, 0'(x) is involutive, and hence — by the Frobenius theorem — it is
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completely integrable. This is equivalent to the existence of functionally independent
functions Sy(x), i=1, 2,...,5, such that the equalities

() S/(x)=C, i=1,2,...,5,

determine the family of the integral surfaces of €’(x) in a neighbourhood of x, (here
C,; are suitable constants). In particular, for C;=S,(x,) they determine an integral sur-
face through x,. Let x/=f;(x!, x*) be functions, given by the implicit function the-
orem applied to the system (4). Then the functions u=f;(x', x?), v=Ffs(x', x?) and
w=f-(x!, x?) are solutions of the system (1).

We have now to check the applicability in our case of the implicit function the-
orem, namely that the determinant

D(Sy, Ss, - .., S:)
(5) Pl Lt

is different from zero at x,. To achieve this, we shall show that there exists for the
system (3) a suitable resolving distribution 0’(x), whose corresponding determinant (5)

is non-zero. This requires a more precise analysis of a part of the theorem quoted in
Section 2.

From the point of view of the contents of Section 2, (3) determines a distribu-
tion 6 =0(x) with basis consisting of the fields

£&=(1,0,0,0, F, G H) g3=(0,0,1,0,0, 0, 0)
E_2=0! lv 0: 0) x3’ xly K) &‘z(o, 0, 0, l. 0, 0, O).
In this basis the operator Q, has the following matrix

0 &F &F 5 F

—&F 0 1 0
D=l _gF —1 0 0
—EF 0 0 0

and similarly Q, and Q, According to lemma [8, (3.4)], there exist two regular vec-
tors a=a(x) and b=>b(x) from A% such that

dimE,(x)=dim E, (x)=2, E,x)NE,(x)={0}.
Denote by £, the linear hull of & and &, and suppose that £, E, ={0}. But

3
(Q?8;, &)= 'zl at'(Q; &, &)=0,

since the matrices of Q, i=1,2, 3 have zeroes in their right-hand bottom corner.
Having in mind also that Q% is antisymmetric and in addition that it is trivial on E,,
we can conclude, that Q=0 on the linear hull of £, and E,. By dimension arguments
it follows from the condition £, £,={0} that this linear hull coincides with 6, which
is impossible, since £, is the kernel of Q.
Therefore E, (| E,+{0}. Similarly £, £,4{0}, and we conclude, that dimE, E,
-dim E, (1 E,=1. Denote by n, and n, non-zero fields resp. from E,N E, and E, E,,
and let &, form with n, a base of £, and &, form with n, a base of £,. The fields

Ca _§¢+ul Na» Cb=§0+u' Mo

where u, and u, are smooth functions, determine a 2-dimensional distribution 6(u,, 4,).
Moreover, it is proved in (8], that if (), u,) is a solution of a special (determined by
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o) hyperbolic in the sense of Petrovski system of PDE, then 6(u,, u,) is involutiv e
and hence resolving for (3). The initial conditions for #, and u, can be chosen arbi-
trarily on a hyperplane through x,; let («, u9) be a solution with initial conditions
zero. Then 0,=6(x), u)) is the linear hull of the fields £, and {,, which coincide at
x, with &, and &, Consequently 8,0 £,={0} at x,.

Since 0,=0, then %, and {, are linear combinations of &, &3 & and &,; having
in mind that

o /

£1 1 O
det( S;):det( ):1.
gy &3 0 1

ri C?

and that 0, £, ~{0}, we get that det (Z‘ C:

\2b b

corresponding to 6, is not zero at x,, since S, are a base in the space of solutions
of the following systems of PDE: £, S=0, £,S=0.

The proof of the solvability of hyperbolic systems of the form (1) is now com-

ey

™

);0 at x,. Hence the determinant (5)

plete.
4. A generalization. To every system of PDE of the form
ou v
axt T gt
(6) ow' ow =12, m,
ot H, oxt K,

where F, G, Hi, Ki are functions of x!, x?, du/ox*=x% 0v[dx®—x!, u=x% v=x"
w =x"5 i=1,2, ...,m corresponds the Pfaff system
( Fdx'+x%dx? —dx®=0
Gdx'+x*dx? —dx® =0
Hidx' + Kidx?—dx'+0=0, i=1,2,....m
of rank m+ 2 in R™% For a hyperbolic Pfaff system of this type, the theorem from
Section 2 ensures the existence of suitable 2-dimensional resolving distributions. Thus

we have the possibility to define hyperbolic smooth OS PDE of the form (6) and
prove their local solvability in the same way as above.
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