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ON THE EXISTENCE OF (J-MINIMAL VIABLE

SOLUTIONS FOR A CLASS OF DIFFERENTIAL
INCLUSIONS

NIKOLAOS S. PAPAGEORGIOU*

In this paper we establish the existence of @-minimal viable solutions for a class of differential
inclusions with a Hausdorff continuous orientor field defined on a general Banach space and satisfying
a compactness hypothesis and a strong Nagumo type condition (Theorems 3.1 and 3.2). When the state
space is finite dimensional, we show that the strong Nagumo type condition can be weakened to a
regular Nagumo type (tangential) condition (Theorem 3.3).

1. Introduction. In a recent paper M. Falcone and P. Saint Pierre [7)esta-
blished sufficient conditions for the existence of slow viable solutions for a class of
differential inclusions defined on a finite dimensional Banach space. In this note we
generalize the results of Falcone—Saint Pierre (7] by relaxing some of their hypotheses
and by establishing an existence result for infinite dimensional differential inclusions.

Consider the following multivalued Cauchy problem on a Banach space X

x(t) € F(x(0)) a. e.
*) 2 x(0)=x,6 KX s

In their recent works, K. Deimling [4] and the author [14], proved that under
Some compactness type hypothesis on the orientor field F(x), a necessary and sufficient
condition for the existence of solutions of (*) is that for all x¢K, F(x)N Tk(x)=Q@
(Nagumo type condition). Here Tx(x) denotes the Bouligand tangent cone to K at x.

In this paper we will be looking for a special type of viable solutions, namely
solutions with velocity which is minimal with respect to a certain criterion 0]
(D(-)-minimal solutions). So let : X—R be a continuous, convex function. We say
that a trajectory x(-) of (*) is “(@-minimal, viable* if and only if

D(x(t))=int {D(2): z€ Ax(?) N Tx(x(£))} a. e.

Note that if @(x)= | x|| (the norm function), we recover the notion of slow solution
Which is important in mathematical economics and control theory (see J. -P. Aubin
[1] and C. Henry [8]). In this case ((-) is nothing else but the metric projection
on the set R(x)=Fx)N Tk(x). Recall that if the underlying state space X is a strictly
convex, reflexive Banach space and KC.X is nonempty, closed, convex, then the metric
Projection function x—proj (x, K) is single valued.

2. Preliminaries. Let X be a Banach space. Throughout this paper we will be
using the following notations:

P,(,,(X)=[[A;A: nonempty, closed, convex)}

and Pue(X)={A< X': nonempty, compact, (convex)}.
~ On P(X) we can define a generalized metric k(-,-), known as the Hausdorff met-
fic, by setting :
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h(A, B)=max {szxg (inf (la—0b||: beB)), fl(lg (inf (||[6—a]|: a€A))}

Recall that (P/(X), k) is a complete metric space.
A multifunction F: X—P/X) is said to be Hausdorff continuous (k-continuous), if

it is continuous as a function from X into the metric space (PAX), &).

More generally, if ¥, Z are Hausdorff topological spaces, a multifunction FtE
—22\{@) is said to be lower semicontinuous (lLs.c.), if for all UZZ open, F=(U)
={yeY: F(y)NU== @} is open in Y.If ¥, Z are metric spaces, this definition is equi-
valent to saying that for any y,—y in Y, we have A(y)Slim Fly.)={y¢eY: lim d(y, F(y»))
=0}, where d(y, F(ya)=inf {|y—2z|: 2 € F(ya)}. We will say that F: Y —22\{@}is upper
semicontinuous (u.s.c.), if for all U=Z open FHU)={y¢Y: F(y)=U} is open in Y
(see J. -P. Delahaye, J. Denel [5]).

Now let us return to X being a Banach space, let X=X be nonempty and let x¢K
The “Bouligand or contingent cone* to K at x is defined by:

dy(x+Mh
Ti(x)={heX: tim AT oy,
F)
where for any z¢ X, di(2)=inf {|z—x"|: x" €K} (see J. -P. Aubin, A. Cellina [2])
It is clear that this cone is closed, Tx(x)=Tx(x) and if x¢int K, then Tx(x)=A.
Note that unfortunately 7k(x) in general is not convex. However if K is convex (or
more generally locally convex at x), then Tk(x) is convex. Also note that if int K+Q,
then for all x¢K, int Tk(x)+@ (see Aubin—Ekeland [13, p. 169]).

By o(-) we will denote the <“Kuratowski measure of noncompactness® which is

defined on the nonempty, bounded subsets of X. So if A is such a set we have:

a(A)=inf {d>0: A= | A, for some m and A/s st. diam (An)=d}.
k=1

Finally given a multifunction F: Y—2\{(@},by “graph of F* we will mean the
set Gr F={(y, 2)¢YXZ: z¢ F(y)}.

3. Main results. Let X be a Banach space and (@: X—»R a continuous, convex
function. We will be looking for (#-minimal viable trajectories of (*). Recall that x: T
=[0, b]—X is an “@¥-minimal viable trajectory* if there exists f€ Sk ={g€ L' (X):
g(t) € Ax(t)) ae}st. x(f)=xo+ [} g(s) ds for all £¢T, x(¢) € K(¢) and @ (x(¢))=inf {D(2):
z € Flx(t)) N Tk(x(2))} a.e.

In our first theorem we will establish the existence of such solutions for a large
class of infinite dimensional differential inclusions. But first we will need two auxiliary
lemmata.

Lemma a: If Y, Z are metric spaces, R: Y—PyZ) is ls.c. and @: Z—R is
continuous, then y—My)=inf{@(z): z€R(Y)} is u.s.c..

Proof: We need to show that for every p¢R, the upper level set U(p)={y¢€Y:
My)=n} is closed. To this end let y,—y, va€ U(W). Since by hypothesis R(-) is compact
valued and (3(-) is continuous, we can find z¢ R(y) st. (A(2)=My). Also because R(")
is Ls.c. we have R(y)=lim R(y,) and so we can find z.€R(ya) s.t. z,—2z. But note

g\al\‘:touguy,)s@(zn)»p%@(z)z lim @(zn)=p=My)=y€eU(p)=A(-) is indeed us.c.

Lemma B: If Y, Z are Hausdorff topological spaces, F: Y—2:\{@} is Ls.c.,
G: Y-2Z){@} has open graph and for all y¢Y, F(y)N G(y)+ D, then y— (V)=FHy)

NG(y) is Ls.c.
Proof: See Flytzanis-Papageorgiou [6, Lemma 2].
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Now we are ready for the theorem establishing the existence of (A-minimal viable
solutions for (¥). Our result extends theorem 4.1 of Falcone—Saint Pierre [7], since our
state space is infinite dimensional, the growth hypothesis on the orientor field A(-) is
more general and (A(-) need not be inf-compact as in [7]. Note that this last fact is
very important, because it allows (A(-) to be the norm .of an infinite dimensional Ba-
nach space and so our existence theorem incorporates the results on the existence of
slow solutjons (see Aubin— Cellina [2]).

Theorem 3.1: If K¢ P(X) with int K+@, @: X—R continuous, convex and
F: K—-Pi(X) is a multifunction s.t.

(1) F(-) is h-continuous,

2) |FX) | =c(l1+]x]) >0,

(3) «(RAB))=k u(B) for all BCK nonempty bounded, k>0,

(4) Flx)nint Tx(x)+Q for all x¢KkK,
then (*) admits a @-minimal viable solution x(-).

Proof: Let G: K—2% be defined by:

G(x)={y€Y: @(y)=inf (P(2): z€R(x))=Mx)}, :

_where R(x)=F(x)N T«(x). Since F(-)is k-continuous (hence ls.c, too) and x—int Tx(x)
has an open graph (see Aubin—Ekeland [3, Proposition 7, p. 169]), from Lemma B we
deduce that x—F(x)Nint Tk(x)is Ls.c.. Hence x—F(x) [l int Tx(x)=F(x) N Tr(x)=R(x)
is Ls.c. (see E. Klein—A. Thompson [l0, Proposition 7.3.3, p- 85]). Also since
R(-) is compact valued (F(-) being compact valued because of hypothesis (3)), there
exists z ¢ R(x) (depending on x) st. B(2)=Mx)=G(x)+=Q and in fact since @(-) is
also conveg, it is easy to see that G(x)¢ Pr(X).

We claim that G(-) has a closed graph. To this end let (xa ya)€GrG (Xn Yn)
Z(x, y) in KX X.We have Q(ya)=M(x,) for all #>1. Since R(-) is Ls.c., from Lem-
ma a above we have that A(-) is us.c.. So passing to the limit, we get:

lim G(ya)=@(y)<lim Mxa)=Mx)=(x, ¥)€GrG=GrG is closed in KXX.

Invoking Theorem 1, p. 41 of Aubin—Cellina [2], we get that x—L(x)=Fx)N G(x)
is us.c. Also because of hypothesis (4) L(x)NTx(x)==@ for all x¢K. Furthermore,
we have |L(x)|=sup{|z|: z€L(x)}<|Fx)|=sup{|2||: 2’ € Fx)}=c(l+|/x]) (hypo-
thesis (2)), while for B K nonempty bounded since the Kuratowski measure of noncom-
pactness is monotone, we have a(L(B))=u(F(B))=k a(B). So if we consider the follo-
wing viability problem

*y x(0)=x,€K
x(t)€K, teT=[0, b]

we see that all hypotheses of theorem 1 of K.Deimling [4] are satisfied and so
according to that theorem, there exists solution x(-) for (¥)'. It is easy to see that x(-)
is the desired (®-minimal viable trajectory for (*). Q.E.D.

We can also have an integral selection criterion.

So as before, let @: X—R be a continuous, convex function and set /x(v)
= [ @(v(t)) dt, for all o(-)eLY(X) if the integral exists, permitting +co. We say that

a trajectory x(-) of (*) is “sp-minimal viable* if and only if lg(i):inf{lg(v): vgs}“x(_»},
where R(x)=F(x)N Tx(x) and S}m(‘))={gel.‘(X): g(t)€ R(x(f)) ael.

foll Our existence result concerning /gz-minimal viable trajectories of (*), reads as
ollows:

? x()€ L(x(0) ae. - z
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Theorem 3.2: If X is a separable Banach space, K¢Pi(X) with int K+@,
@: X—R is continuous, convex, for all 2(-) viable trajectories of (*) and all
V€ Sy 12(V) is defined and finite for at least one such v and F: K—P(X) isa
multifunction satisfying hypotheses (1)—(4) of Theorem 3.1, then (*) admits a
Ig-minimal wviable trajectory. )

Proof: From Theorem 3.1 we know that there exists @-minimal viable trajectory
x(:) of (*). So @(x(t))=inf{}(2): z¢ R(x(¢))} a.e. Note that R(-)being Ls.c. is measur-
able. So we can apply Theorem 2.2 of F. Hiai, H. Umegaki [9] and get that:

inf{l(v) : V€ Sh k=15 inl{P(2): 2€ ROx(®)} dt=[§ P(x(2) dt=1(x)

= x(-) is Iy-minimal viable solution of (*). Q.E.D.

If the underlying state space X is finite dimensional, then we can improve Theorem
3.1 by replacing hypothesis (4), with a standard Nagumo type hypothesis. So we have
the following existence result.

Theorem 3.3: /f dim X< o, K¢P(X)with int K+, @: X—R is continuous
strictly convex, inf-compact and F: K—P(X) is a multifunction s.t.

(1) F(-) is h-continuous

2) |Rx)|=c(1+] x]) >0,

(3) Ax)NTx(x)*=Q for all x¢K,

then (*) admits a (D-minimal viable trajectory x(-)
Proof: Let Fux)=F(x)+ . B, where B, is the closed unit ball in X. Clearly,

F-) is h-continuous, | Fo(x)|=(c+ 1)+ | x | and Filx)(int Tx(x)4+@ for all x¢K.
Consider the following approximating viability problems:

xult) € F(x,(2)) ae.
(*)n x,(0)=x,6K

x(t) €K, teT=]0, b]
From Theorem 3.1 (note that hypothesis (3) of the theorem is automatically satisfied
with £=0, because of the finite dimensionality of X), we know that for every n=-1, (%),
admits a @-minimal viable solution x,(-). Then for all n -1, we have:

lx®) S+ D+e|lxt)]| ae. =[x, B)] =] x |+ +1) b+ [ || xu(s) ] ds.
So from Gronwall’s inequality we get that for all n -1 and all £¢ T
| ea(®) || (] %0 | +(c+1)b) exp (cb) =M.

Thus || x,(¢)| =(c+1)+cM=M ae. Therefore {x,}(-)}n-1 is uniformly integrable in
L'(X) and so {x,(-)}s=1 is equicontinuous in C(7, X). It is also bounded. So from the
Arzela— Ascoli theorem, we deduce that {x,}, .1 is compact in C(7, X). Hence by pas-
sing to a subsequence if necessary, we may assume that x,—x in C(T, X).

Note that F,(x)l".F(x) (convergence in the sense of Kuratowski, see K. Kura-
towski [11, p. 339]). Because int 7,(x)+ (), from Lemma 1.4 of U. Mosco [12)
we have that F,(x)) T(x)=R.(x) 5 Fx) N Ty(x)=R(x) for all x¢K.

Now we claim that the minimization problem min {()(2): z¢ R(x)} is Tihonov well-

posed, i.e. it admits a unique solution z¢R(x) and every minimizing sequence converges
to it. That a solution exists, follows from the continuity of (A(-) and the compactness
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of R(x). That it is unique, is a consequence of the strict convexity of (). Finally,
let {z,}, -1 be a minimizing sequence, i.e. A(z,) . A(x), where A(x) is the value of the
problem. Without any loss of generality we may assume that for all n=1, @(z,)
< A(x)+ 1. Since (A(-) is inf-compact, {z,},—1 is relatively compact and so we may as-
sume that z,—z. Then @(z,)—(z)=i(x), ie. z is the unique solution of the prob-
lem. Therefore min {)(z): z€ R(x)} is Tichonov well-posed. Without any loss of gene-
rality assume ((0)=0.

Set A,(x)=min{@(2) : 2€R,(x)} and A(x)=min {D(2): Z€R(x)}. Since R, (x)XR(x) and
the limit problem is Tihonov well-posed, we can apply Theorem 30of T. Zolezzi [15]
and get that A,(x) ' A(x). Now note that for everv n--1, we have:

J X ()= ().

Recall (see Lemma o) that A(-) is us.c., so we get that:

lim 2,(x,(6)= lim A(x(8)=Mx(2))
Also from the Dunford Pettis compactness criterion and by passing to a subse-
quence if necessary, we may assume that X, “x in LY.X).Then for all AC 7' Lebesgue

measurable we have ya knix,,x' in L'(X). Recalling that /x(v) is weakly ls.c. we get:
b : b : S 2
[ DOalt) (O) dt=lim [ a0 %) dt=lim [ D(x() at
—lim[ A (x,(f) di=[ lim 2,(x,(f)) dt (Fatou’s lemma) =< [ A(x(£)) d¢
A A A

—:-r‘f D(x(1)) dt-;:’if Mx(t)) dt=D(x(£))=Mx(2)) ae.
On the other hand, note that for every n 1

x(£) € F(x,(t)) ae.

and recall that x,“x in L'(X) and | x,(¢)/—M ae. for all n=1. So from Theorem
3.1 of [13), we get that:

x(£) € conv lim {x,(£))}n \Cconv lim F,(x,(f)) ae.

But we claim that F,(x,()) "> F(x(¢)) as n—~-- To this end note that for every
n1, x—u(x)=h(F,(x), Flx)) is continuous and #,(x) | 0. So from Dini's theorem we
have 4,(x)—0 uniformly on compacta. Then note that:

R(F,(x,(8)), Fix(t))=h(F(x,(£)), Flx0)+hr(Fx(6), Fx(1)
=, x,() + h(F(x,(8), F(x(2)))-

We see that u,(x,(f)) -0, while from hypothesis (1) we have A(F(x,()), F(x(t))
=0 as n— o= F(x,(t)) " F(x(t)). Therefore

x(t)econv lim F(x,(¢))=conv Flx(f))= F(x(f)) ae.
Furthermore, x(¢)¢ K for all £¢ 7. Then for A0 we have:

d (x)4x(t)  dylx(t+2) —AE(R)
% 3

where ¢(A)—0. So we have:

2
—y - €¢(r) ae.,

19 Cn. Cepanka, xu. 4
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L d(x(t)+hx(t))
lim % )X =

AL0

=0 a.e.

= x(t) € To(x(t)) ae.

= (1) € FX(0) 1) T(x(8)) = R(x(1).
Because of the uniqueness of the solution of min {(7(2): 2 € R(x(1)} Mx(¢)) and

since as we saw above, @(.i‘(t));j).(x(t)) a.e., we conclude that x(-) is the desired (-
minimal viable solution of (¥). Q.E.D.

Remark: If in Theorem 3.3 .\ is strictly convex and )(z)= 2z , then the result

applies and we get slow viable solutions for (*). By the way, note that there is a minor
inaccuracy in the work of Falcone—Saint Pierre [7]. The state space X has to be
strictly convex, or otherwise the metric projection need not be single valued.
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