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VARIETIES OF METABELIAN JORDAN ALGEBRAS
VESSELIN S. DRENSKY*, TSETSKA G. RASHKOVA

In this paper we describe the latiice of all subvarieties of the metabelian variety of Jordan algeb-
ras over a field of characteristic 0. As a consequence we establish the asymptotic behaviour of the codi-
mension sequence and estimate the topological rank of the proper subvarieties of the metabelian variety.

Introduction. In this paper we study varieties of metabelian Jordan algebras over
a field of characteristic 0. S. Pchelintsev [l] has shown that the variety It of
all metabelian (i. e. solvable of class 2) algebras defined by the identity (x;x,)(x3%,)=0
is quite complicated. Our main purpose is to describe the lattice A(M) of all subva-
rieties of M. The description is given in the language of graph theory. It is proved
that this lattice is distributive and the proper subvarieties of Wt are simpler than M
itself. Let 11 be a proper subvariety of M and let f=0 be a polynomial identity for 11
of degree d such that f does not vanish on 9. We compute explicitly the sequence
and the series of codimensions of 9t and estimate asymptotically the codimensions
of 1. In particular,

(M, £)=(203+E+ 1262+ (23— 42—t + 1)[26424 — 1)1 —4£2)

and c,(9M)~~27(n/2r)"? for n large enough.On the other hand side, ¢,(11)=0(n?*) and
c(1, £)=f(t)/(1—1)**?2, where f(£)¢Z[t]. The topological rank of 9 is infinite [1] and
it turns out that for 11 this rank is finite and is bounded by d+ 2. Another consequence
of the description of the subvarieties of O is that a subvariety of Mt is nilpotent if and
only if it satisfies a Jordan standard identity. The proofs of the main results of the paper
are based on the representation theory of the symmetric and general linear groups.

1. Preliminaries. We consider only Jordan algebras without 1 over a fixed field
K of characteristic 0. Let J=J(X)=J(X,, Xg,...) be the free Jordan algebra over K
and let J, be the subalgebra of J generated by x,,..., X,. Sometimes we denote the
free generators of J by other letters, e. 2. v, y; 4, etc. We denote by P, the vector
subspace of J/, of all multilinear elements of degree n.

For a variety 11 of Jordan algebras we denote by 7' (11) the T-ideal of J of the
polynomial identities for 11; F(1)=J/T (1) is the relatively free algebra of 1, F,(11)
is the subalgebra of rank m in F(11); P,(11) and F{’(1) are the spaces of the multi-
linear elements of degree n and of the homogeneous elements of degree n in F, (11),
respectively. Especially, we denote by I the metabelian variety (which coincides with
the class of all solvable of class <2 algebras) defined by the identity

(1) (x1Xg) (x3x,)=0.

We use left-normed products only, i.e. Xy XgXg = (X1 X9) X3
Let S, be the symmetric group with its left action on the set of symbols {i,..., n},
and let GL, be the general linear group canonically acting on the vector space span-
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ned by xi,..., x,. The representations of S, and GL,, are described by partitions and
Young diagrams [2]. For a partition A=(A,,...,2,) of n, A, =---=21,=0, 4, +---+A,=n,
we denote by [A], M(L) and N, (L), respectively the Young diagram, and the irreducible
S, and GL,, modules related to A.

The symmetric group S, acts on P, by the rule

cEa(xy ... ). x)=Za;(Xe(iy- - )(- - Xo@py)r CES,

(with an arbitrary distribution of the brackets in (x; ...)(...x;)) and P, is a left
S,-module. Similarly, GL, acts on J, by

gEa,(x, o) X )=Ea,(g(x) .- ) (.- &) ECLpe

Let 11 be a variety of algebras. The actions of S, and GL, on P, and J, are
inherited respectively by P,(11) and F,(11). It is known [3] that P,(11) and FM (1)
have the same module structure: If P,(1)=X k& (k) M(%), then FV (1) = Zk(A) N, ().

In the module N, (A)=N, (A, ..., )=F,(11) there exists a multihomogeneous ele-
ment fi(xy, ..., x,) of degree A, in x;, which is uniquely determined up to a multi-
plicative constant. We call f, the standard generator of NV, (A).

An important numerical invariant of 11 is its codimension sequence c,(11)
=dimP,(11), n=1,2,.... The generating function of this sequence c (1, £)=Xc,(1N)¢"
is called the codimension series of 11.

In the sequel we shall use a particular case of the Littlewood — Richardson rule
for the tensor product of GL,-modules [4]:

1 +1
@) N2 19 Rk Na(19)="T Ny (3, 24, 12-2-1) 15 N (28, 120-2442),
k=0 k=1

+1
@) Ny 1)@ Na (174) = £ Np(3, 24, 12-2) £ 5 N, (28, 12-2043),
k=0 k=1

Besides, we need the following rule for describing the consequences of a mullilinear
identity. .

Proposition L.l.[5 Lemma 25). Let M be an S,-submodule oy P, and let Q
be the set of the multilinear consequences of degree n+ 1 of the polynomial identi-
ties of M. Then Q is an S, -submodule of P,,, which is a homomorphic image of
the S,,,-module

(M1 S, )Rk M(2) 1 Spir H(MR M(1)) [ Sy

In the first summand, S,_, acts on the set {l,..., n—1} fixing n and S, acts on
{n, n+1}, the tensor product is an S, , < Sy-module, where the direct productS, xS,
is canonically embedded in S,,,, similarly for the second summand. For a subgroup
of the group G and R and S being respectively //- and G-modules, R 1 G and S| H
denote respectively the G-module induced by R and the module S considered as an
H-module.

Corollary 1.2 [5 Lemma 26|. Let & be a partition of n and let M) <=P,.
Then the S,,,-module M'(L) of all multilinear consequences of M()) in Pnyy equals
L a, M(p), where the non-negative integers a, are bounded by the number of diag-
rams [p] obtained by the following devices :

(i) We remove a box from |\| and obtain a diagram [v). Then we add two new
boxes to |v] and produce a diagram |n) such that these two new boxes do not be-
long to the same column of [u).

(i) We add a new box to (L] and obtain [p].
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2. The metabelian variety. We work in the relatively free algebra F()) of the
metabelian varietyv W} defined by the identity (1). The identities xy=yx, yx(xx)
= y(xx)x which hold for all Jordan algebras give that F(I) is a commutative algebra
satisfyving

3) xxyx=0.

Linearizing (3), we obtain

(4) X3Xg VX = — XgX; YX3— X3X; Y Xa,
(4) XXy VX = —X X YX[2.

ln (4) we replace x3 by w7, and obtain

(5) U lgXy VX = — U liaX| YV Xq.
As a consequence of (5) we establish the identity

(6) Uyl Xa(1) V1 Xa(@) Va + - - Xo(n-1)Yn—1 Xotn) = (SIGN O) 1l X, V1 Xq Vo - o« Xpey Vo1 Xy €S,

In virtue of (4), () and (6), F(M) is spanned by

D e ) £
(7) XXy Xy X1y Xy e Xy X
k=i <iy< o <ip i<fy<-++<j, p=0, £=0, 1.

We recall the construction of the algebra introduced by S. Pchelintsev [1]
Let V be a vector space with a basis ©,, 7, ..., and let £ be the unitary exterior
(or Grassmann) algebra over V', £=X E() s -0, where £© is the homogeneous com-
ponent of degree s and £="= (. Then £ has a basis {v, v, ... t',s‘i,<i‘3<-~~<i,}.
We denote by W the vector space with abasis{(b, e,, e,)}, where b is a formal symbol
and e, ¢ F©), e, ¢ 91 EC-Y, s -0, are monomials from the basis of £. We define a
multiplication in the vector space V+W by ©,u,=0, (b, e,, e,)(b, e, e;) =0,

[ (b, e, v, €5), When e,, e;¢€E®,
| (b, e, e3v,), when e, ¢ E©), eg¢ EC-Y,

By [1], V+W is a metabelian Jordan algebra.
Proposition 2.1. The elements (7) form a basis of F(M).
Proof. Let

(b, e,. e)v, =7, (b, &), €)=

e, X =0
b Spip

(£} 0 C AR’ *‘_ Upig X X4y Xpy o oo Xg) Xj & Pagy Xa Xp Xy Xy Xj 00 X
!
in F(M) be a sum of monomials of the form (7) and let a coefficient a,; or fi,; be
nonzero in K. Since F(O) is a graded algebra, without loss of generality we may
assume that f(v,,....: v,) is homogeneous in every variable x,,..., x,. Let & be the
largest integer with a,, + 0 or f,,, 0. We substitute x,- x,+u,u, and consider the
linear component in u,:
’ - 5
(8 LUty Uy Xp Xpy oo Xy X+ 2Ryt BaXp Xy, Xgy - Xy Xy 0,

A oty

in the latter summands k- s, In (8) we substitute the following elements from the
. algebra of Pchelintsev: u, b, u, ~©,., x,~v and obtain

m+l

\ > - - ¢ 7 -
B0 0L Uy, + o v, o A ‘v" + 22BrssOa Uy, + u"r" 0.
Pk
1
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Therefore
(8" EI @pif iy + - Uy + 22Bpg Vs T, - . T, =0
holds for any fixed sets {i;, ..., i} ={k, So, ..., Sph iy<++- <hy, k<Sy<lo+- <Sp If all By
are zeros, (8") yields a,,;=0; analogously uk,,_O nges BM,»0 In the other case (8”)
implies i, =k, i;=s,, -«-,lp=5, and this is a contradiction with the assumption £>i,.
Therefore, all coefficients in (8) equal zero and the elements (7) are linearly indepen-
dent. Since F(M) is spanned by (7), these elements form its basis.

The following theorem gives the descnptxon of the §,-module structure of P,(M)
and a formula for the codimensions.

Theorem 22.

(2p+l)p, n=2p+1, p=1, 2,.

i) c,(M)=
O (T (2’“‘2)( +1), n=2p+2, p=0, 1, 2,.
and for n sufficiently large, c,(MM)~2"(n/2r)'2

(i) c(M, O)=RL+t+1)202+ (23— 42—t 4 1))262(2t — 1) (1 —4£2)\2,

(iii) The following GL,-module isomorphism holds

Fu(M)=N,,()+N,(2)+ E (N (2, 17"+ N, (2, 12)) g Nu(17).

(iv) For n=3, P,(M)=X M(3, 2P, 19)+ZM (27, 1%), where the summation runs
over all partitions (3, 27, 19) and (2', 1%) such that 3+2p+q=2r+s=n, r>0.

Proof. (i) The formula for ¢,(M) follows immediately by counting the multi-

linear elements of the basis (7) of F(M). In order to obtain the asymptotic behaviour
of ¢, (M) first let n=2p. Then the Stirling formula gives

e )= (7, ) =0)! Ip—=1)! (p+1)!=(p2/(p+1)) (29) (PP
~(p?(p-+ 1)) (4xp)\? (/€Y 2xp (plef? = (p/(p+ 1)) 2% (p/ )22 (n]2m) 2.

For n=2p+1 the proof is similar.
(ii) Using the binomial formula the following identities can be verified:

2p Sy 2
p!zo(2p+l)(p)a’ /(1 —4u)™?,

E, (%) wr=1/01—ay7,

p=0

z (2,{’) W) p+1)=(1—(1 —4u)?)2u.

pe0

Hence we obtain for the codimension series of )

e@. H=t+ T (¥F) (panypeery 3 (V) peen

pl

=f+’?5°((‘2p+2)!/p-(p+2)l)(p+l)t’”’+ zo ((2p+ D) pl(p+1)])ptirtt
- e
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—t+ p{o(f?;') (P + D+ Cp+1)pt(p+ N =t+ 2 (V) (@1 EH12)

(2 +32)+ A+ VD) (p+ D) o=t +(t+1/2)/(1 —4 PR (24 +3/2)(1 — 4 £2)'2
(1)1 —(1—4£2)12) 202 = (283 + £+ 1)/ 22+ (283 — 4B — 4 1)/203(24 — L (1 — 4012

(i) Clearly, F)(M)=N, (1), F? (M)=Nn(2). Since the Hilbert series H(N,, ¢,
., t,) of a GL,-module N, completely determines N, and

HIN, RNy by e e st)= HWN 'y by oo s tdH(ND by ooy bk

it suffices to prove that

(9)  HFG+D (M), ¢ -y bn)=H(NR(2, 177Y), tyse oo st (N (17), £y .20 ER),
() H(FO+ (M), s oy b) = H(Np (2,17), £y, oot (NG (17), Byt ) p=12,. ..

It is known that H(N, (M), £y, ... tp)=Eact} ... £ '™ where a; equals the number
of semistandard A-tableaux of content a=(ay,...,@,). Forthe vector space V, span-
ned by x,...,. x,. let us consider the vector spaces W,=V>#+! and Wy V2” span-
n‘ed by {xx Q) x, @+ Rx;, | k=i <-- <ip} and {27, @ - R xy, ji<-+-<Jp} respec-
tively. It is casy to see that

HW,, ¢, ..., £ ) HINL (2, 170, 45, -« . o B
H(Wy by .., ta)=H(Na(1?), by - ., -
Since the monomials (7) which are in F2+V (M) form a basis of FZ7+Y (M), the
mapping
Xn Xy Xpy e X, X —> (R X, -0 @x,ﬁ)@(x,l(@ R xy)

can be extended to an isomarphism of graded vector spaces Fi22+(M)= W, Xy W,.
Therefore

HF2P D (M), by, b)) = HW Qg Wy s E)
=H(W,y b, ... b )H(Wy b t)=HN (2 1770, by B )HING(12), By )

and this gives (9). The proof of (9') is similar.

(iv) The proof follows immediately from (iii) in virtue of (2) and (2).

3. Subvarieties of the metabelian variety. It is known that the lattice A(M) of
the subvarieties of a variety 11 is distributive if and only if P, (1), n=1,2,..., is a
sum of pairwise non-isomorphic irreducible S,-submodules. Therefore Theorem 2.2 (iv)
gives immediately

Theorem 3.1. The lattice AON) is distributive.

In order to describe all the subvarieties of M we use the following method which
has already been applied for several varieties (see e.g. [5]). We associate with I an
oriented graph gr(2). The vertices of gr (M) are the irreducible submodules M(%) of
Unz1t P, (M) and the set of edges consists of all (M(R), M(p)) such that M(r)c- P,(M),
M(”)""-f’nn(‘!)l) for some n and the elements of M(p) jare consequences of these of
M(R). For any N9 with a 7-ideal Uc F(M) we associate a subgraph (1) of
gr(M) in the following way. The vertices of y (1) are all M@A)=P, (M) (1U, n=1,2,...,
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(i. e. M()) are identities for 11) and the set of edges for y(ll) consists of all edges
from gr(9M) which connect vertices from v (11). Obviously,

v (1 M) =w () U v (W), w(ll, Uly)=v(11,) v ()

for N, ,=M. Hence v is a dual isomorphism of A (M) onto the lattice of all sub-
graphs G of gr(9M) satisfying the property: If v is a vertex of G, then all edges be-
ginning from v belong to G as well. Therefore we shall describe the subvarieties of M

if we obtain all consequences of degree n+1 of M(L)=P,(M).
Theorem 3.2. (i) Let M=M(3, 27, 19=P,(M). Then all the consequences of

M in P,.,(ON) are
(10) M(3, 2¢+1, 19-)+M(3, 27, 19+1)+ M(2P2, 19).
(ii) For M=M(2", 15)=P,(MN) the consequences of M are
(11) M3, 27, 1=+ M(3, 27, 1)+ M(3, 272 15+ + M2, 5=+ M(27, 15+1).
(By convention, M(3%, 2%, 19)=0 if some of the integers a, b, ¢ is negative.)

We shall prove the theorem in several steps.
Lemma 3.3. (i) The polynomials

(12) Fr(Xyyeev s Xpigey) =2 (5ign ©)(sign T) Xo(1) X1 Xe(1) Xo(2)
' v Xe(p41) Xo(p+2)» + - Xo(ptg+1) GESpigit TES,.H.
(12" fo (X1 Xp)=E (sign o) (sign t) Xo(1) X«(1)- - - Xolr) Xx(r)

Xo(r+1) » + » Xa(r+s)» (13 S,H, T(S,»

are nonzero standard generators of Ny(r), Np (W< Fp (M), for 1=(3, 2%, 19), p=(2
1), respectively.

(i) Let
(13) Bav=8ap Uy, Ugs Xyseony Xas Yroo oo s Yp) =L (SIN P) Uy Uiy Xy Xy Xg Xg

cee XgXaYp(1) - o - Yoit).

Then gy.1, is a consequence of (12) in F(M). Similarly, g, ., and g s+ follow
from (12") if r>0.
Proof. (i) It is known (see e.g. [3]) that f,, f. are standard generators of GL,-

modules N, (1) and N, (p), respectively. Therefore, the only problem is to show that
(12) and (12’) are nonzero in F(M). Since g, +0 in F(M) the proof will be com-

pleted if we establish (ii).
(i) In (12) we replace x, by x,+u,u; and take the linear component in #, (which

is a consequence of (12)). In this way we obtain
Z (sign 0') (Sign T)uﬂ‘,xc,(]) X((]) P xo(p +1) x'(,y+|) Xa(’+')) s e ,\'a(p{»q-}l)
+ L (sign 0) (Sign T) &, 4g X1 X (1) Xo(2) Xe(2) -  + Xa(p+1) X1(p+1) Xol(p+2) + + * Xa(p+q+1)

in the latter sum o(1)=1. Applying (6), we derive as a consequence of (12)

C I (Sign oY lgX X, ... Xpsy Xpiy Xo(pid) ++ » Xo(ptq+1)
where 04 c¢K and o fixes 1,...,p+ 1. Therefore g,,,, follows from (12). Similarly»
if s-0, replacing in (12) x,,, by wu, we obtain

¢’ L (Sign 0) Uyl X X, XgXg <+« X, X, Xa(r i1y« « - Xo(r+s+1p

where O¢'¢ K and 0¢S,,, , fixes 1,2,...,7 ie g, follows from (12’). Analo-
gously, the linear component in u, of f, (X, ..o Xy XpHlily Xpvpne oy Xpiy) equals
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h(uy, tig, Xy, - oy Xpa5)=RrIZ(signo)u, g x,xy. .. X,y X, X Xo(r+1) - - . Xo(r+s)+ R X (signo)
UylaX 1 Xy + o Xp1 Xy Xo(r) Xa(r+1) + « - Xo(r4+s» 0FRE€K and o fixes 1, 2,...,r and 1, 2,
....r—1 respectively. The alternating summation on c¢S,.,, o fixing 1, 2,...,r—1,
gives the polynomial

"I (Sign o) g X, Xy . .. Xpq Xpq Xo(r) « + - Xo(r+s)

where 0= ¢"¢K and o fixes 1,..., r—1, i.e. g, ., follows from (12').
Lemma 34. In F(M) the standard generators f. and f, of (12) and (12') are

consequences of g of (13) for A=(3, 29, 18-°Y), (3, 2%, 1%+1) and p=(27*', 1°).
Proof. Applying several times (3), (4), (4) and (6), we express fi as a linear
combination of monomials (7) and obtain that for - (3, 2% 11), f; is proportional to
T (Sign 0) XX XgXg . -« Xg:1Xa+1 X1 Xo(g2+ +- Xo(a+b)s
where 6€S,., o(j)=/j for j<a+2. Up to a multiplicative constant this equals
Y (Sign 0) X1 X1X9Xs . . . Xg41 Xg41 Xo(1) Xo(a+2) - « - Xofa+b)

o(j)=j for 1<j<a+2. Obviously, the latter polynomial is a consequence of ap (X1,
Xy Xgveoos Xabgh Xio Xata - - o » Xa4p)- Similarly, for A=(3, 2°71, 1°*1), f, equals a li-
near combination of

oy (Xis Xy5 Xyseovs Xg3 Xaps » o v v Kot Xpa1y v otois Xgpparh s E20-

Now, let us consider the case p=(27*1, 1%) and let for example t be the iden-
tity substitution of S,.,. Then, applying (6), we express

I (Sign 6) Xo(1) X| Xo(2) Xa - - - Xo(@a+1) Xg+1 Xo(a+2) + + - Xo(a+b+1)
as a linear combination of
(14) I (SIgn o) Xy Xy Xg Xg .+ . Xg+1 Xg+1 Xo(a+2)+ « + Xola+o+1)3
(147 T (SING §) X; Xy X1 X; X9 Xg -« « Xi—q Xie1 K41 Xi+1 + » - Xa+1 Xas1
Xo(@+2) +  + Xota+b41p 1<i<a+2;
(147) X (SIgN O) Xoas2) X1 XaXg « « « Xgsq Xge1 X1 Xo@+3) - - - Xo(atbsiy

o fixes 1, 2,...,0+1.
Clearly, (14) follows from g, the same holds for (14") applying (4'). In order to
handle (14”) it suffices to show that I (signp)yea) X1 X1 Yo - - - Vo(s) 1S @ consequence of

(15) R(ity, Uy Vi - - v Vp) =S (SIgN P) sl Vo) - - - Yooy
In the following calculations we work modulo the polynomial (15).
O==h( ¥y, Xy Xy, Voo, Vy)=E(signp)([(6+ 1)/2] ¥y X1 X1 Yo« - - Vo)
—[6/2) ¥y Xy Yoy X1 Yo « « - Vo)
£ (sign p) ([(0+ 1)/2) 5, X, X3 Yoy - - - Yo+ ([0/2]/2) Xy %, Yoy Y1 Yiors « + - Vo)

and the alternating sum on y,, ..., v, gives

0 X (sign p) ([(54 1)/2]) Yoy X1 X, Vo) - - - Yoy —([0/2)/2) %, X,

Yoy« « « Vo) = [(b+1)/2] Z(sign p) Yoy X1 X1 Vo(2) - - Yooy
Therefore (14”) follows from (15) and, as a consequence, f vanishes modulo g,,.

Lemma 3.5. /n the notation of Theorem 3.2 (i), (ii), the consequences of M in
Paix (M) form an S,,,-submodule of the modules (10) and (11), respectively.
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Proof. Since the consequences of M in P,., (M) form an §,,,-submodule of
Py (M), the proof follows immediately from Corollary 1.2.

Proof of Theorem 32. (i) In virtue of Lemma 3.5 it suffices to show that
the polynomials f,, v=(3, 27+1 1¢-1), (3, 2¢, 17+1), f, p=(2°%% 19) are consequences
of (12). By Lemma 3.3 (ii), g,,,, follows from (12) and Lemma 3.4 gives the desired
result.

(ii) Similarly, g, ., and g, ,,,, are consequences of (12') and hence f,, v= (3,
2,143, (3, 21, 1), (3, 23, 1:43), for P=(27F 1570, (27, 1541), follow from (12').

Corollary 36. Let W be a subvariety of WM. Then W is nilpotent if and
only if W satisfies a Jordan standard identity

(16) X (sign 6) X,41 Xo(1) - « - Xo(m=0.

Proof. Clearly the polynomial from (16) generates in P,., () the submodule
M(2, 171, Therefore, it suffices to show that f;=0 from (12"), p=(2, 1™') implies
the nilpotency of F(11). But it follows immediately from Theorem 3.2 that M(L)<= Py(M)
vanishes modulo f"‘ if A=(3, 27, 19), p+g=n—1 or A=(2’, 15), r+s=n. Since this
holds for all M(L)=P, (M) for N=2n+1, we obtain that x, xy...x9,,,=0 is a con-
sequence of (16) in F(IN).

Corollary 3.7. Let f=0 be a polynomial identity of degree d for the sub-
variety W of M and let f+0 for WM. Then

(i) c,(M)=cn?t!, where c¢>0.

(i) c(Q, H)=f(O)/(1 —2t)y'*+2, where f (L)€ Z[¢].

(iii) The topological rank of N is finite and is bounded by d+2.

Proof. Let 11 he a proper subvariety of )} and let f--0 be a polynomial iden-
tity of degree & for 11 such that /=0 for WM. Then some of the polynomials (12) or
(12") vanishes on 11 and, as a consequence of Theorem 3.2,

(17) P,(M)c IM@3, 20, 19)+EM (2, 19),

where the summation runs over all partitions of n with p, r<d.

(i) The hook formula for the dimensions of the irreducible S,-modules gives that
for the partition (3, 27, 19) of n, p being fixed, is a polynomial of degree p+2 inn;
similarly for fixed r, dim M (27, 1°) is a polynomial of degree r. Therefore, by (17)

c,(M)=Zdim M(3, 27, 19+EdimM(2’, 1%), p, r<d.

Hence there exists 24 —1 polynomials f,(n) of degree at most d+1 such that c¢,(11)
<ZXf,/(n) and c¢,(11) is bounded by a polynomial in n of degree d+1, i.e. ¢,(11)
<cn?*! for a suitable ¢>0.

(ii) As a consequence of Theorem 3.2 and (17) we obtain that for n large enough
there exists an integer 2<d+1 such that

P,(M)=Z M3, 2%, 19+ZM(2’, 1%),
where the summation is over all partitions of n with p<k—2, r=k.
Therefore, for n sufficiently large, e. g. n>>N, ¢,(11)=g(n), where g(n) is a polynomial
of degree k& and g(n)¢Z. Hence

2(n) za,("*l,"), 0,6z 1=0,1,...., &

e =foO)+2a, (") tr= £y () + T a1ty = /(1 =+,
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Here f,(¢£)=Xdim M (1) ¢", n=N, where the summation is over all partitions A such
that M(M=P,(), ~=(3, 2¢, 19) and r=(2", I°) with p=k—1 and r>k. Hence
fo(H)€Z[t] and, therefore, f(£)€¢Z[¢] as well.

(iii) The definition of the topological rank of a variety 11 satisfying the Specht
property is given in [1]; in [5] it is restated in the language of the graph ot the va-
riety 1. We follow the exposition in [5, Theorem 3.2]. It is easy to check that the
set of isolated points A(M)’ of the topological space A(M) consists of all subvarieties
B of M such that v (V)—gr(M) does not contain M(2, 1), r==0, 1, 2,.... Analo-
gously, for p=2 A(M)?={V=M v (V) does not contain  M(3, 272, 19) and M(27,
19)}. On the other hand, every isolated point of A(1) is isolated also in A(M). There-
fore, (17) gives that A(1)“*?=(@ and the topological rank of 11 is bounded by 4+ 2.

REFERENCES

B. Mueaununes. Paspemnmsie uuiekca 2 suoroo6pasus aareép. Mam. ¢6., 115, 1981, 179-203.

Beiiab. Kaaccuueckue rpynmbl, HX HHBAPHAHTH M MPEACTaBACHHS. M., 1947.

C. pencku. [lpercTaBaeHus CHMMETPHYECKOA Tpynnsl H MHOr0O6pasus AuHedHbiX asreGp. Mam.
¢6., 115, 1981, 98-115.

Mak1ouaaba CHMMeTpiueckde dyskuMd M MHorourens Xoama. M., 1985.

. V. Drensky. On the identities of the three-dimensional simple Jordan algebra. /"oduwnux Cod.

yHuus., Pax. mam. Mex., kx. I, vamex., 78, 1984, 57-71.

Received 25 10. 88

Institute of Mathematics
Bulgarian Academy of Sciences
1090 Sofia, P. O. Box 373
Bulgaria

Higher Technical School
“Angel Kanchev*

7017 Rousse

Bulgaria



