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ONE THEOREM OF PHRAGMEN — LINDELOF TYPE FOR
PARABOLIC EQUATION OF SECOND ORDER

DINCHO I. CRISTEV

A modified version of the famous three balls theorem is derived. Then a new theorem of Phrag-
men — Lindelof type for the linear parabolic differential equation of second order is proved.

Nowadays we consider as theorems of Phragmen — Lindelof type a certain amount
of results from the qualitative theory of partial differential equations. Usually they
concern the behaviour of the solutions with respect to their behaviour on the boundary
of the region. Some results concerning certain rates of decrease or growth of the
solutions also belong to this kind of theorems.

To prove such qualitative results we need a certain kind of theorems concerning
some forms of continuous dependence on the extensions of the solutions on larger
domains.

Perhaps, the most suitable one is the so-called “three balls theorem”. Its proto-
type is the classical Hadamard theorem for the three circles for an analytic function in
plane. In the case of partial differential equations instead of an analytic function we
consider a solution of the equation. There are some variants of the three balls theorem.

In this paper is given a modified version of the generalized theorem of the three
balls (Theorem of Nadirishvili). Then a theorem of Phragmen — Lindelof type for
parabolic linear equations will be proved.

Let Cy, be a cylinder in R*+!=R7XR}:

Cie, ={(x, HeRmHY | x—x,|<r; 0<t<T}
In Co, we will consider a parabolic equation:

ou o 0%u 8 ou
(H.1) o= Uy;l ay(x, t)er ,-fl b;(x, t) de+c(x, t)u,

(H2) A-1C P<Ea,(x HLGSALE AL

We assume that the coefficients ay(x, f), &;(x, t), c(x, f) are analytic functions. Let
them be continual in the complex domain |Jmx;|<§, i=1,2...n;|Jm¢|<d and
their moduli be bounded there by a constant M. Let Q;* be the upper base of Cj,

and Qi Q¥ be a concentric to Q& ball with radius p: 0<p<r.
Theorem 1. Let ECQx, be a glosed set and

(H.3) mes £>a>0.
There exist constants o>1 and ,>0 which depend on », M, a, 8, T, r, such that if
(H.4 A

) (8]l <!
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and
(H.5) lu(x, £)|]|z<e<tqy

then |U(x, t) io,," <g°,
r/2

Proof of theorem 1. The following natural estimates for the derivatives
of u(x, ¢) with respect to x are valid:

(H.6) | D u(x, t)|<c,c*k!,

where k=|a| and constants ¢,>0 and ¢>0 depend on A, M, 5, T, a, r. Because of
these estimates the proof of the inequality coincides with the proof of a similar inequality
in [1].

Now let us formulate and prove the following theorem:

Let Q be the following domain:

Q={(x, HER™I[0<t=T; 0<x,<oo; £ x2<rl,
i=2

We will consider equation (H.1)-(H.2) with analytic coefficients in Q, which are as
above continual in the complex domain: |Jmx,| <3§, i=1, 2,...n |Jmi| <3, and
bounded by a constant M. Function u(x, ¢) is a solution of (H.1){(H.2) in Q. Let us

denote by Grand xy: Gr=Qn{t=T}, xy="r, 0,...0).
Let Enc Qx” N=1, 2... be closed sets and for each N the following condi-

r4 "’
tion is fulfilled: mes Ex>a >0, where ¢>0 is a constant.
Theorem 2. There exists a constant ¢>>0 which depends on A, M, 5, T, a

and r such that if
(H.7) |u(x, )| |z, <exp(—exp(cN)),

then u(x, t)==0 in Gp.
Proof of theorem 2. Let g and o be the same constants as in Theorem 1.
Let us choose constant ¢ so great as the following estimates to be fulfilled : exp(—exp (c))

<&, and

1
(H.8) ¢>2In —-

So, because N-1 = Q"N. and by means of Theorem | and (H.8) we derive the esti-
r/4 r/2

mate with respect to the balls Q:{"Q:N il 1% ¢ -
|u(x.t)|,0,& <exp(—exp(¢N).oV)=exp(—expN(c—In :, )) < exp(—exp( c;/))-

But integer N is arbitrary and it follows that u(x, £)=0 in Q.

As a consequence of the inequality (H.7) we derive that u(x, f) is zero on cha-
racteristic G, but it is not necessary identically equal to zero though it is bounded.
Let us consider the following example:

Example 1. Let the function u(x, f) be a solution of the following equation:

ou %
H.9 W
(H.9) o~ o
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in a rectangle IT: T ={0<f{=T;|x,| <r}. Let u(x,, £) which is not identically equal to zero
be equal to zero on the upper boundary of Il. A. P. Tikhonov has constructed in
[2] the following solution of the equation (H.9).

Let f(£)€ C=(0, T]), f(£)<O0 on [0, T); f®(T)=0, k=0, 1,.. and

max | f® (£)| <k*1+9, k=1, Dl

wWhere 0<e<1.
We will define the function u(x,, ) as follows:

2k
k)1

uxs, )= £ f9 ()

This function is a solution of the equation (H.9) in the rectangle IT and for ¢=7
u(x, t)=0. But it exists a constant >0 such that |u(x,, #)|<k. Let us determine the
function u(x,, X, £) as follows: u(xy, xa £)=t(Xa ?)- Then u(x;, X, ) is a solution of
the equation

o ou 0wt
ot o ox;

in Q, where Q=Tx{0<x,<co}. The function u(x, xy ) is bounded in Q and for
t=T u(x, Xo t)|e=7 = 0 but u(x,, x5 £)==0

For the strip R*x{0<¢= T} the following result can be proved:

Theorem 3. Let Q be the domain:

Q—{(x, )R | xER; 0<E<T):

Equation (H.1)-(H.2) is defined in Q under the same conditions and assumptions as
In Theorem 2 and u(x, t) is a bounded solution of it, continual for: |Jmx;|<3,
=1,...n, |Jmt|<5. Denote by Q the hyperplane t=T and by Q% a ball (n-di-
mensional) in Q, with radius p and center in xo.

Let r>0, xy=("y,0,...0) and Evc Q.Y be closed sets with
mes Ex>a>0,

wWhere the constant a0 is fixed and N is an arbitrary integer.
_ There exists a constant ¢>0 which depends on A 8, M, T, a and 1 such that
’f|u(x.t)lf\,-<\exp(—exp (NT)), then u(x, t)=0 in Q.

Proof of Theorem 3. The proof is a trivial consequence of Theorem 2, the
analycity of u(x, £) with respect to x and the uniqueness theorem for the inverse
auchy problem for the parabolic equation. The,solution u(x, ¢) belongs to the class
of the bounded functions [3). ‘ ¥
Remark. The requirement u(x, f) to be bounded in Q may be changed to:
u(x, t) belongs to the Tihonov class of uniqueness: u(x, f) <c,exp (ca| x[*), where
€,>0, cg>~0 are constants.
th To prove that u(x, #));.r=0 some obvious changes have to be done. In this case
ere is a theorem of uniqueness for the solution of the inverse Cauchy problem too [4].

20 Ca, Cepauka, xn. 4
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