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THE NIELSEN NUMBER OF SET-VALUD MAPS. AN APPROXIMATION APPROACH

W. KRYSZEWSKI, D. MIKLASZEWSKI

In the paper the fixed point classes and the Nielsen number of a set-valued map from the recently
introduced class J are defined. The class J contains, for example, u. s. ¢. maps of compact ANR-spaces
taking contractible values. The Nielsen number of a /-map ¢ is homotopy invariant and equal to the
classical Nielsen number of a sufficiently close single-valued approximation on the graph of ¢. All re-
sults are formulated for compositions of J-maps satisfying an additional assumption (A.2). The given
examples show the necessity of (A. 2) and the ‘dependence on a decomposition.

Introduction. In the recent article [7] (see also [8]) a new class J of set-valued
maps of compact ANR-spaces was defined and studied from jthe view-point of the fixed
point index theory. The class J is quite large and fairly general. For example, it contains
upper semicontinuous maps taking values being Rs-sets (the definition of an Rs-set is
recalled below). ! A : ; Pt ol

Below, we try to apply the approximation techniques developed by [7] in order to
define the fixed point classes and the Nielsen number N(¢p) of a map ¢ being a com-
position of J-maps. We prove that this number is homotopy invariant and constitutes
a lower bound for the:number of fixed points of . : L8

We hope our approximation approach, being very simple and entirely elementary
may be useful in a further development. _

Let us remark that several different methods in the set-valued Nielsen theory
were presented by H. Schirmer [10], [11], J. Jezierski [9], Z. Dzedzej [6]. As
a general reference we use [2] (see also [4)).

We would like to express our gratitude to Professor Gorniewicz for his kind encou-
ragement during the preparation of this paper and to the referee for his suggestions.

1. Preliminaries. We denote by / the unit interval in R. By a space we shall
understand a compact metric ANR-space and by a map an upper semicontinuous trans-
formation of spaces whose values are non-empty compact connected sets. The composi-
tion of two maps is a map again [1].

If M is a class of maps and X, Y are spaces, then by M(X, Y) we denote the
totality of M-maps (i. e. maps from the class M) from X to V.

By S we denote the class of single-valued maps.

Let X be a space with a metric . For a subset A=X and a number &0,
BX(A, €): —{x¢X|dist(x, A)<e} where dist(., A) stands for the distance from A.
Unless it leads to ambiguity, we shall write B(A, ), too.

Let Y be aspace. Forany map ¢: X—Y, x¢ Xand £-0, let ¢(x, &)~ BY(o(BX(x, €)),€).

Let X, Y be spaces, ¢: X +Y a map and let £0. A map f¢ S(X, V) is an e-ap-
proximation (on the graph) of ¢ — we write f¢a(p, &) — if, for each x¢X,
f(x)€o(x, €). (i. a. the graph of f lics in the e-neighbourhood of the graph of ¢).

One can easily verify the following lemmas.

(1.1) Lemma. /f Z is aspace and y: Y—~Z is a map, then, for each >0,
there is a 80 such that a map gofeS(X, Z) is an e-approximation ot yo@,
provided ge¢a(y, 8) and f€a(p, 6).
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Using symbols, we write down the assertion of (1.1) shortly:
a(y, 8)ea(e, d)=a(yeo o, ¢).

(12). Lemma. /f Fix()={x¢X|x¢o(x)} is contained in an open set UcX
then there is a 1>0 such that Fix(f)cU for fea(e, n). ]

We say that u is a path from x, to x, (resp. a2 loop at x) in BcoX if
u¢S(I, X), u(@)=x; for i=0, 1 (resp. u(0)=u(1)=x) and u(/)= B. The constant loop at
x€X will be denoted by x™. If « is a path, then the reverse path z— is given by
u—(t)=u(l—t). If uy,..., u, are paths, then the product path z (given bx w(t)=u/nt
—i+1) for n=Y(i—1)<¢<n"'%) is denoted by u,*...*u,

Lel B, B,=X. We say that the paths u, #;€S(/, X) are homotopic with
ends in B, B, and write ; ; ‘

uy~u, end (By B))

if there is a map u¢ S(/</, X) such that u(t, )=ut), u(i, t)¢B; for i=0, 1 and f¢ I

Observe that u,~u, end (B,, B,) if and only if there are paths @, w, in B, B,
respectively, such that wyi)=u/j) for i, j=0,1 and the loop u,*w, *u *wy is homo-
topic rel {0, 1} to the constant loop u,(0)".

2. Admissible maps. One sees easily that not all maps may be approximated on
the graph, however, if X, Y are spaces and ¢: X—VY is a Jmap, i. e. satisfies the
following condition .

(/) for each x¢ X, e>0, there is a §=38(x, €)>0, d=¢, such that, for any positive
integer n and yo€ B(p(x), 3), the inclusion B(e(x), 8)=B(e(x), €) induces the trivia
homomorphism ¢

m,(B(9(x), 8), ¥o)—T,(B(@(x). €) Vo),

then ¢ has arbitrarily close approximations. ]

Observe that ¢ is a J-map if, for each x¢ X, the set ¢(x) is proximally n-connec-
ted, in the sense of Dugundji [5], for any nonnegative integer n. .

The class J was introduced in [7] where actually the following theorem was
proved.

(2.1) Theorem. Let o AKX, Y).

(i) For each £>0, a(y, €)+0o.

(ii) For each p=0 there is an €>0 such that any maps fo f1€a(e, €) are joined
by a h(;motopy fES(XXI, ¥) (i e. f(.,0)=fp i=0, 1) such that f(.,t)¢a(o, p) for
any tel. )

In the above situation, we say that f,, f, are homotop.ic p-close to o.

The maps @, ¢,€J(X, Y) are said to be Jhomotopic (we write g,~ ,9,) if
®r=¢(., i) for e XX, ), i=0, 1. Pt

Let X be a space. A map ¥: XX, is called admissible (or ¥is an A-map) it

(A.1) there exists a diagram of J-maps and spaces

.l
D3 X=4\,"'."’ ng---—’xu—’ n+l=x

(called a decomposition of W) such that ¥ =0, ... 090 ¢,

(A.2) for x ¢Fix(¥) there is a neighbourhood W, of ¥(x) which is trivial in the
sense that, for each y,¢ W,, the inclusion W,—X induces the trivial homomorphism
T We yo)—my(X, ¥o)- ' . ;

emark. Observe that (A.2) is equivalent to the assertion that each loop in W,
is fixed ends homotopic to a constant loop. This condition was assumed in [9] where
a different approach to the definition of a Nielsen number for a set-valued map was
presented.
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Let Wo, W, € AX, X) and let Dy: X=X, X, ™ ... X, X, =X, D,: X=Y,

i ~ Y
- Y.,—“~. .. Y,-%Y, =X be decompositions of ¥, ¥, respectively. We say that the
pairs (¥, D,), (¥,, D,) are homotopic if n=m, ¥V,=X, and v,~,0, for each
k=1 2,..., n.

The class A seems to be quite large.

Example ([7)]. Denote by P one of the following classes of subsets of .X:

C={K=X|K is compact and contractible},

Rs; ={K= X there are sets K,¢C, K, =K, for i=1,2,..., such that K=K},

F—={K= X K is a fundamental absolute retract} (see [3]).

If o: X +X and ¢(X)¢P for each x¢X, then ¢¢ X, X)=A(X, X). ]

3. Properties of admissible maps. In order to make the further study and nota-
tion as clear as possible, we are going to deal only with admissible maps being com-
positions of two J-maps. It should be observed that passing to a more general situa-
tion causes no serious trouble.

Let X be a space, Y¢A(X, X) and D: X2y -~X be a decomposition of .
Directly from (1.1) and (2.1) we get that for any £>0, there exists Fe¢a(¥, §); preci-
sely F=gof where ¢ and f are sufficiently close approximations of y and ¢, respec-
tively. Next we have

(3.1) Lemma. (i) There is a number u,=ua,(‘¥)>0 such that, for any y¢Fix(\¥),
the neighbourhood Y(y, a,) of (V) is trivial (in the sense of (A.2)).

(ii) For x¢X and an open set U, W(x)=U, there is a w0 such that any two
points a, be¥(x, n) are joined by a path in U. In particular, there is a number
Bo=Po(¥)<2 'u, such that, for each y¢Fix(\Y), points a, be¥Y(y, B,) are joined by
a path in Y(y, 2 'a,).

Proof. Let K=Fix(¥). For x¢K, there is a n=n(x) such that B(¥(x), n)=W,
(see (A.2)). By the upper semicontinuity of ‘¥, there isa p=p(x)--n such that WY(B(x, pn))
—B(¥(x), 2 'v). Since K is compact, there are points x,, ..., x,€K such that
K= UB(x;, 2 "u(x,)) ’

Let ag=2""min{p(x,)|1=<i -n}. Take any y¢K. There is j, 1-=j<n, such that
B(y, ap) = B(x; u(xy). Hence ¥(y, ao)-B(W(x), 2" 'n + ao)= W, Thus any loop in
¥(y, a,) is homotopic to a constant loop.

Assertion (i) can be proved similarly, but, in place of (A.2), one should use the
connectedness of values of W and the uniform local contractibility property (ULC —
see [4]) of ANR-spaces. (]

In the sequel, for y¢Fix(\¥), we put B,—¥(y, a,).

Now, we are going to define the fixed point index of A-maps. Let V be an
open subset of X such that Fix(‘¥)(d(V)= Q.

In view of (1.2), there is a number n,=ny(¥, V)>0 such that no element of
a(¥, n,) has fixed points on (V). By (1.1), there is a p,=p,(‘¥, V)0 such that,
gofea(¥,n,) for gealy, po) and f€a(e, py). At last, by (2.1)(ii), there is an g,=¢,(\¥, V)0
such that, for f,, f, €a(p, &) and g, g, €a(y, &), there are maps f¢S(XN' </, Y), ge S(Y
<1, X) such that f(., )=, g(..0)—g, i=0,1, and f(.,¢)€a(p, py). g(., 1) € a(y, py).

The homotopy F: Xx</—+X (given by the formula F(x, £)— g(f(x, {), t)) joins
Fn*ﬁ"fu and Fy=g,of,.

oreover, for any t¢/, F(..t)=g(., 8 f(..t)ca(\¥, n,). Hence x++F(x, ¢) for
x€d(V), tel. By the homotopy invariance of the ordinary fixed point index of single-

valued maps (see [4])
ind (X, Fo, V)=Ind(X, F,, V).
We may define the fixed point index of the pair (¥, D) on V by
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(32) ind(X, ¥, D, V)=ind (X, gof, V)

where gé€a(y, €), fea(o, €) and 0<e<gy(Y¥, V). The index is well defined since it
does not depend on the choice of g and f. .
Using the same reasoning, we are in a position to define a number N by

(3-3) N(¥, D)=N(g°f)

where gé€a(y, g (¥, X)), fea(o, ¥, X)), and N(gof) is the Nielsen number of gof
(see [2] or [4]). The number N is well defined once again.

Remark. The above index in a natural way generalizes the index introduced in
[7) (or [8]) for J-maps. One can easily prove that standard properties of an index are
satisfied (maybe except that of commutativity). Observe that, to define the index (or
the number MV(¥, D)), assumption (A.2) is superfluous.

4. The Nielsen number of an admissible map. Let X be a space, ¥¢A(X, X)

and let D: X— Y —»X be a decomposition of ¥. We say that points x, y ¢ Fix(¥)are
D-equivalent, if there are:

(i) a path # from x to y,

(i) a number 80, trivial neighbourhoods W, of W(x) and W, of ¥(y)such that

u,-\«,gofou end (ny Wy)y

for any fea(o, 8), g€al(y, d).
If fixed points x, y are D-equivalent, then we write x~Py.

First, we shall prove the following

(4.1) Lemma. There exists 8,=205,(V) such that, for arbitrarily chosen points
x, yEFix(¥), x~Py if and only if there is a path v from x to y such that
v~gofov end(B,, B,) for any fea(o, 8,). ge€a(y, S).

Proof. The “only if” part is to be proved. By (L.1), (2.1)ii), choose 8,=35,(¥)
such that for any f, f €a(o, 8,), g g €a(y, 8,) the compositions gof and g’ f" are
homotopic a,-close to ‘Y.

Let x, y¢Fix(¥), x~Py. There is a path « from x to y, >0, and trivial neigh-
bourhoods W, of W(x) and W, of ¥(y) such that u=~g'cf'ou end(W, W,) for
g €a(y, d), f'Calo, 9).

By (3.1Xii), choose n>0 such that any two points from W(x, n)(resp. from ¥(y, n))
may be joined by a path in B,(| W, (resp. in B, W)

Let v: —u and let g€a(y, 8,), fea(p, 3,). Take 8,>0, 8, <min(3,, 3), such that
a(y, 8,)ca(e, 8,)—a(¥, n). Let g'ca(y, §), f €a(e, 8,), F': =g'of". Obviously, x, F'(x)
€W¥(x, n) and y, F’(y)€¥(y, n). Hence there are paths o, from x to F(x) in B,.N W,
and v, from y to F'(y) in B, ) W,. Moreover, by the choice of &, there is a homo-
topy HeS(X%1, X), H(.,0)=F, H(.,1)=F=gef such that, for any t¢/, H(.,?)
€a(\¥, ao). In the diagrams of paths

Fov Fov

v Foo

any loop is homotopic rel{0, 1} to a constant loop and v,»FH(x,.)=B,, v,«H(y,.)
<B8,. Hence v~Fov end(B,, By) [J

22 Cn. Cepnuxa, xu. 4
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The relation “P” is non empty. Moreover, we prove

(42) Theorem. The relation “P” is an equivalence.

Proof. Let x¢Fix(¥). By (1.1), there is a 8>>0 such that a(y, 8)c a(e, 8)=a('¥, Bo)
(Bo=Bo (). Let f€a(o, 8), géa(y, 3) and F=gof. Obviously, x, Alx)¢¥(x, By). By
(3.1)(ii), there is a path v from x to F(x) in ¥(x, 27'a,)=B,. The homotopy %¢S(A
X1, X), k(s, t)=7(t), shows that x~~Fox™ end(B,, B,) and x~?x.

If x~Py, then, reversing the path, we easily see that y~P“x.

Now, assume that x~2y, y~?z, x, y, z¢Fix(\¥). There are paths # from x toy,
v from y to z and a number £>0 such that

u~Fou end(B,, By), v~Fov end(By, B,)

for any F=gof where g€a(y, €), f€a(9, €). Let hy, ha€¢ S(/X/, X) join u and Fou, v
and Fow, respectively. Let w,=a,(i..), i=0, 1, w;= khe(j—2,.), j=2,3. The loop
Yy wwy« F(y)~ =, lies in B,, so by (3.1)(i), it is homotopic to a constant one.

The diagram

Fou Fly)~ Fow

Wy

u y v

shows that x~P%z. [

The equivalence classes of the relation “~?” are called fixed point classes
of (¥, D) and denoted by Wp (below we shall omit the subscript D unless it leads
to ambiguity).

(4.3) Theorem. Any fixed point class W of (‘V, D) is an open subset of the
set Fix(\¥). .

Proof. Let x¢W. By the ULC property of the space X, there is a number n>0
such that any point y¢ B(x, n) (1 Fix(¥) is joined with x by a path « lying in B(x, B)-
Observe that #(/)=‘¥(x, B,). Choose an £>-0 such that a(y, €)ca(e, e)=a('¥, By) and
let F—gof where gea(y, €), f¢a(p, €). For each £¢/, Fou(t)ec'W(u(t), Bo)="¥(x, ao)
Obviously, x, Flx)€ ¥(x, Bo) V., F(y)€¥(y. Bo).

By (3.1)(ii), there are paths w, from x to F(x) and w, from y to F(y) lying in
W(x, 27'a,) and W(y, 2 'ay). But ¥(x, 2 'ag)U¥(y, 27 "a))=¥(x, a5). The loop
usw,»(Fou) »w, lies in W(x, ), so x~Py since u-+Fou end(B,, B,). Thus B(x,n)
N Fix(Y)<W. ()

Recall that as W is upper semi-continuous Fix(¥) is compact; hence we have

(4.4) Corollary. The number of all fixed point classes of (¥, D)is finite.
These classes are mutually disjoint and compact. ||

The fixed point class W of (¥, D) is said to be D-essential if, for each open
neighbourhood V of W such that cl(V)( Fix(¥)=W,ind (X, ¥, D, V)=+0. This defini-
tion does not depend on the choice of V' in view of the excision property of the
index.

By the Nielsen number of the pair (Y, D) we understand the number
N(¥, D) of D-essential fixed point classes of (‘V, D).

(4.5  Corollary. Any admissible map ¥ : X—X with a decomposition D has
at least N('V, D) fixed points.| )

5. Homotopy invarlance of NV(-,). In this section we are going to prove that the
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Nielsen number MV(¥, D) is homotopy invariant and MY, D)=N(¥, D). As above, let

X be a space and let ¥¢A(X, X) have a decomposition D: Xy S X,

Let W,,.... W, be all fixed point classes of (¥, D). There exists a number &, =E(¥)
0<E,<B(¥), such that B(¥; &)N BW: g)=0@ for i%j, 1<i, j<n, and 'such that’
for any x¢ X whatever a, b€ B(x, &), may be joined by a path in B(x, 27 a,).

(5.1). Lemma. There is a number 0<e,=&,(¥)<8(¥) such that, for fea(y,¢,),
gea(y, &) and an arbitrary fixed point class F of F=gof (see [2] or [4]), there is
i€{1,2,.... n} such that F=BW, &) Fix(F).

Proof. By (1.2), there is p<Z, such that if G¢a(¥, ), then Fi x(G)= B(Fi x(*¥), &).
Choose an & =&,(¥)<8,(¥) such that a(y, &) a9, &)=a(¥, p). Let F=gof where
gea(y, &), fea(o, €). Denote by F an arbitrary fixed point class of F and take x'¢F,
v' € Fi x(F). There are points x, y¢Fix(¥) such that x"€B(x, &), V' €B(y, &). Hence
x, x', F(x)€¥(x, Bo), ¥, ¥'s F(¥)€¢¥(y. B,). There are paths u, from x to x' in
B(x, 2-1q,) and u, from y to y" in B(y, 27! o). By (3.1)(ii), we have paths w, from
x to Alx) in ¥(x, 27 q,) and w, from y to A(y) in ¥(y, 27 ao). Observe that the paths
Fou, Fou, lie in ¥(x, a,) and ¥(y, a,), respectively.

Let i¢{1, 2,..., n} be such that x¢'¥,. We shall end the proof by showing that:

(i) if y'¢F, then y€W,; and

(i) if y€Ww,, then y'¢F.

Ad (i). There is a path ' from x’ to y’ such that @’~Fou’ rel{0, 1}.

The diagram

Fou, Fou' Fou,

shows that u, s’ * uy~Fo(u,*u su,) end(B,, B,), hence x~Py, yeW,. Ad (ji). Since
x~Py, therefore, by lemma (4.1), there is a path # from x to v such that u~Fou
end (B,, By). The diagram

Fo(u,) Fou Fo(uy)~

Pt s
(U‘)_ u (U’)_

shows that w~Fow rel{0, 1}, (w=(u,) " +u*(,)) i. &. x~y, yeF.[]

(5.2) Theorem. N(¥, D)=MNMY, D). -

Proof. Let e<ey (¥, B(Fix(¥), &) and e<e(¥). By (3.4), M¥, D)=MF)whe-
re F=pof, gealy, s;:,o (aﬁ. ¢). Let ¥ be a D-essential class of (¥, D). Then, by
(32), ind(.X, ¥, D, BW, &) = ind (X, F, B(¥, &))+0. Hence there is x¢BW, &)
ﬂ.Fi x(F). Let F be a fixed point class of F that contains x. By (5.1), we find a class
:h of (W, D) such that F= BSW £,)N Fix(F). Therefore W=W and F is essential.

us W BW, &) (1 Fix(F) defines a bijection between the sets of all essential fixed
point classes of (¥, D) and F. (For its surjectivity see (5.1)). 0]

To prove the homotopy invariance of the Nielsen number M(¥, D), we shall need

the following lemma which is proved in [8).
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(5.3) Lemma. Let ¢ J(XXI, Y). For any €>0, t¢l, there is 2>0 such that for

hea(o, 1), h(.,t)¢ca(e(., 1), €).
(5.4) Theorem. The Nielsen number N(¥, D) is homotopy invariant.
L]

Proof. Let W, W,¢A(X, X)andlet Dy: X~ Y'~X, D,: X~>¥"5X be decom-
positions of ¥, \¥,, respectively. Assume that (¥o, Do) ~ (¥y, D)), i. €. @5 ~ J@y, Yo~ J1
and Y'=Y”. We have ¢¢J(Xx/I, Y') and y€JY' </, X) such that ¢(.,i)=¢, and
v(., )=y for i=0,1.

By (5.2), (3.3), there is €>0 such that M(¥,, D,)=M(g, < f,) for arbitrary g; €a(y,, €),
f.ea(o;, €), i=0, 1. By (5.3) take 2>0 such that, for z¢a(e, ) and kea(y, X), A(.,0Q)
¢a(o, &) and k(.,i)ea(y, €), i=0, 1. Such maps 4%, k exist in view of (2.1)(i).
Obviously, N(¥, Do)=N(k(.,0)oh(.,0)=Nk(., 1)eh(., 1))=MY¥,, D). ]

6. Examples. In this section we shall show several examples.

(6.1) Example. First, we shall prove that condition (A.2) in the definition of

an admissible map is really not superfluous.
Let C be the complex plane, X=S'—C, where S! is the unit circle, and Y ={(e®*,

ety ¢ C < C|t¢[}.Define a J-map ¢: X—Y by
[ {lern, ey | £€[0,2/3]) for z=1
(p(z)_ ((,o‘.m' (t’+2)f3, e?m‘(t'+2)/3) for Z:eg"i’, te(O, 1)

and reS(Y, X) by r(z, s)=z. Observe that the pair (¥, r) is a 3-fold covering of X.
For a sufficiently close approximation f¢S(X, V) of ¢, deg(ro¢9)=3 (by deg(.) we
denote the Brouwer degree). Thus N(rof)=|1—3|=2 (see[2]). But
{ St for z=1
rop(z)= e for z=e¥, t¢ (0, 1).
Hence Fix(ro¢)={1}.
(6.2) Example. There exists a ¥ ¢ A such that the fixed point classes of (¥, D)
depend on the choice of D.
Let X-S'</ and define maps @€ J(X, X), f, g¢S(X, X) by the formulae
(2, t) for 0=t<1/3 or 2/3<t=1
92 D=\ (zemis |05 =12} () for 1323,
y (k(2), £2) for 0=£<1/3 or 2/3<t--1
fiz, )= (k(z)e®™, £?) for 1/3<<t<2/3,

and g(z, t)=(k(z), t) where k is given by
b 2, 0<Arg(2)=3n/2
(2)=] -, 3n/2< Arg (2)=2r.

It is easy to see that the diagrams D: X5 XL Xand D' X% X5 X are decom-
positions of the same map ¥ ¢A(X, X). Let x=(1,0), y=(1, 1). Then x, y¢Fix(‘¥)and
x~P"y. We shall show that x is not D-equivalent to y.

F"i,rst. observe that (z, £)€¢(z, f) for any (2, £)€X. Thus, for each >0, F=foidy
¢a(¥, €) and x, y€Fix(F). Suppose to the contrary that x~7y. Then, by (5.1), x, y
belong to the same fixed point class of F, so there is a path « from x to y such that
u~Fou rel{0, 1}. If r: X-»8" is given by r(2, t)=2, then the maps rou and roFou
are homotopic to each other. But this is a contradiction since, as it is easy to compute
deg (ro Fou)=deg (rou)+1 (the Brouwer degree is homotopy invariant). [ |
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Let X be a space. We shall say that a map W¢€A(X, X) is strongly admis-
sible if condition (A.2) holds for each x¢.X (not only for x¢Fix(‘¥)).

(6.3) Proposition. If ¥: X—X is strongly admissible, then the jixed point
classes of (¥, D) do not depend on D.

Proof. Using the strong admissibility of ¥, we prove (comp. (3.1)) that there are
numbers a, = a,(¥) <a(¥), B; =By(¥) <2 @, such that: for x€ X, ¥(x, a;) is trivial and any

o; Y;
two points from W(x, B,) may be joined by a path in ¥(x, 27" u,). Let DX Y =X
i=0, 1, be two distinct decompositions of ¥. Take x, y€Fix(¥) and assume that there
is a path « from x to y. By (l.1), there is >0 such that, for f;ca(o, €), g:€a(y; &),
F,=g,of.ca(¥, B,), i=0, 1. Hence, for any ¢€/, F(u(f))€¥(u(t), B,). By compactness,
there are points f,=0<#< ... <t,=1 such that, for each j=1,..., n, Fou([t;, t;])
=W(u(t)), B,) for some t;€/. Additionally, we assume that u(ty) € B(u(tj—1), 271 a,) for
j=1,..., n+1, where 1,=0 and t,,,=1. Points F,°u(f) and F,ou(f;) may be joined
by a path @, in W(u(z)), 2~' a,). Points F,ou(t;—y) and Fyou(f;_,) may be joined by a
path 7; in W(u(t)), 2~ a,). Hence the loops @j (7))~ and (Fyou|lti—y, ) *w;«(F,
ou|[tj_y, t])~*(v;)~ are homotopic rel{0, 1} to constant loops. Thus we see that

Foou,\'\jf'x oll end (Bx, By),

which shows that x~?2y if and only if x~P2wy. [

(6.4) Example. There exists a strongly admissible map ¥ such that M(¥, D)
depends on the choice of D.

Indeed, define maps ¢’ €J(S!, SY), f/, g €S(S% S') by the formulae:

0'(2)={ze>it|0=t<1/2},

f(@)=2
, 2 for 0=Arg(2)<3n/2
g@= { 216 for 3n/2<Arg(2)<2r

and let f, g€ S(S?, S?) be the suspensions of f', &, respectively. 3
Next, let ¢ be the suspension of ¢’ (i. e. @ maps the segment [e_, z, e4] linearly
onto the join of ¢’(z) with e_, e, where e_ is the south pole and e the north pole

of §?). Then ¢¢J(S?, S?),and D: S35 2l D 525 52552 are decompositions of
the same strongly admissible map ¥: S?—S?, W(x)=S* for each x¢S Obviously,
SY=Fix(¥) is the single fixed point class of (¥, D) and (¥, D). By (3.2), ind(S?, ¥,
D, $?)=ind (S foid, S?)=1+deg(f)=3 and ind(S% ¥, D, §?)=1+deg(g)=0.Thus
N(¥, D)=1 and” N(¥, D')=0.

(6.5) Proposition. If ¥ is a J-map, then N(¥, D) does not depend on the
choice of D.

The proof follows easily from (1.1), (2.1)(ii), (3.3) and (5.2). 1)

Finally let us note that the notions of the Nielsen theory given above, related to
a single-valued map will be equivalent” to the classical ones. This is a simple conse-
qQuence of (5.1) and (5.2).
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