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ON THE TWO DIMENSIONAL WHITTAKER TRANSFORM
R. K. SAXENA, J. RAM

This paper deals with a new theorem concerning the Whittaker (ransform of two variables. The
result is derived by the application of two dimensional Erdélyi-Kober operators of Weyl type.

1. Introduction and Preliminaries. Following K. Miller [7, p. 82|, let us deno-
te by A the class of functions f(x,y) which are differentiable any number of times
and let they and all their partial derivatives be

0| x|=%, |y|=%) for all §;(i=12) as x— o, y—soco,

With some modifications the Erdélyi-Kober operators of Weyl type in two dimen-
sions of a function f are defined as follows:

(L1) Ko K58 flx,g)= LTS prn [ Fyermago8 (g gyniect
i o KT E TmTarne®) Dy L

X (v—yy+#-! f(u,v)du dv,

provided that f(x,y)¢A; a,p are real and m,n=0,1,2,...; where D+ stands for the

operator 0**™/dx™ dy".
For a0, p>0, m=n=0, (1.1) becomes a two-dimensional fractional integration

operator:

n,,8 o0 0
(1) KK f(x.9)=tormr | [t oS =2y~ (o—yP- ) dado.

If we assume that <0, B<0 and m, n are positive intégers such that a+m>0
B+n>0, then (1.1) will yield the partial fractional derivatives of f(x,y).
The Laplace transform h(p,q) of a function f is defined as in [2].

(13 (P 9)= 21f(x9); pg)= [ [ e (=px—gnfix.)dx .

Analogously, the Laplace transform of flay x*=b%,c\ yi—d?) is defined by the
Laplace transform of F(x,y), where

(1.4) F(x.y)a{ flay xT=bY, c | y—d¥); x>b>0; y>d>0,
0, otherwise.

We now define

(15) h(p.q)=2{Fx.y); p.q}= f f exp(—px—qy)flay X=b"), ¢ yi—d*) dxdy,
where R(p)>0, R(¢)>0.
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The Whittaker transform of two variables, g(p,¢) of a function F is defined by
Pers 1 1
(16)  &pq)= Wi, [Fx.)s poup,gl=[ [ (pxP~H(qy)"~" exp(— 5 px——5qy)

X Wil px) Wi, (g9) Flx, y) dx dy,

where R(p)>0, R(q)>0, g exists and belongs to A. Here W ,(2) is Whittaker’s con-
fluent hypergeometric function defined by [10, p. 340]

1 1
& —A—-+n 1+u—-2—

1
3
P+ e—tdt,

e zk o
(l '7) X W)\.u(z) = ——l f t
[z —h+n) 0

where R(%—-— A+p)>0.

Before presenting the theorem in the next section, we need the generalized Whit-
taker transform A,(p,q) of F defined by
1—An+a—p+1

(18) &p.9)=0x53, [FCx.9)i 0,00 q1= [ [ (pP=(@yr='G(px |nsis. Srnt-s)

XGR(gy |\ T3+8-o+Y ) F(x,y)dxdy,
8+1—o, —§+u. -
where g,(p,q) exists and belongs to A,R(p)>0, R(q)>0. Here the function G}%(2) in

(1.8) is Meijer’s G-function.
In general, the G-function is defined by C. S. Meijer [6] by means of the Mel-

lin-Barnes integral

R g .
(1.9) G X2 =Gz 5, o) =g J () 2 s,
where i=(—1)'2, z+0,

m n

1 rs,-s) I ri-a;+s)
J=1 J=1

(1.10) x(s)=—7" ;

I r(1—b,+9) I r(a,—s)
J=m4 J=n+1

an empty product is interpreted as unity: b,(j=1,...,9), a5(j=1,..., p) are complex
numbers such that none of the poles of I'(b;—s), j=1,..., m coincide with any of the
poles of I'(1 —a;+s), j=1,..,n. The contour L separates these two sets of poles. Ge-
neral existence conditions are available from A. Mathai and R. Saxena [5] or from
Y. Luke (4]

The object of this paper is to establish a theorem on the Whittaker transform of
two variables which extends the results due to R. Saxena et al. [9], A. Arora
et al. [1]) and R. Raina and V. Kiryakova (8]

2. Theorem. Let

0 oo l
21) P =W (Fxy)inopql=] [(per—'(ay) " exp{—5 (px+gy)}

X Wil px) Wau(gy) Flx,y)dxdy.
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be the two-dimensional Whittaker transform, then for a0, >0, the following re-
sult holds:

(22) Ky K3P[g(p. 1= G5, [F(x, ¥)5 po gl

where R.H.S. oy (2.2) is defined by (1.8).
Proof: Let a>0, p>0. Then in view of (1.2) and (1.6), we find that

oo oo

o " 8
Kz~ 1 Lelp = rigripy | [ ¢t PP o—af
. y d d i e?qi, " “u—n—u y—8—P L —1 P )B——l
< g(u, v) du dv I‘(u)l"(B);!-;,[ 7 (u—py-'(v—¢q
1

X[ f f (ux)p—"(vy) ' exp (——21— ux— vY) Wi (ux) Wi, (vx)F(x,y) dx dy| du dv.

On changing the order of integrations which is permissible and evaluating the in-
ner integrals through the integral [3, p. 212, eq. 76]

1
—— ax

[ xox—py—te ' Winax)dx=T@)p—"G8@x|™' " )
r

P—Cu T‘f‘l‘- 27 o

where R(c,)>0, we obtain the following result:
3. Corollary 1. Let

1 1
3.1 &S pq)= W,’_‘I':‘I [F(x,y); Rt5, litg, P.q]

-

=/ T (x) () " exp (— o px—oy 9¥) Wi (pX) Win(gy) Flx,y) dx dy
exists and belongs to A, then for.a>0, p>0, the following interesting result holds:
1 1
(B2 Ky Kb (g p )l =Ky K} LW [Ax)i vt 5. mtg. Pl

A— o it g 1 B1
:Wx_’_a_ ..:i [Ax)ih—g+5. h—5+tg. Pl
1) 2. 1 2
Corollary 2. Let
(3.3) gd p.q)=Wis [Ax.¥); n+X 38 + A, p.q)

= [ Ty (qypsnet exp(— - px—y 49) Wi pX) Wan(@y) Fix.y) dx dy

exists and belongs to A, then for a>0, p=0, the following interesting result holds :
(3.4) Ky K39 (g po )l = Ky K32 (W2, A6, 9); n+d 8+2s, p.gl}
=Wr-%nr [Ax,y); n+h 8+r,p4].

=By
Next, if we take p=o-1 and use the identity

g
(X)=x_ " ¢ ,

S
u#-’-, +m
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the two-dimensional Whittaker transform reduces to a two-dimensional Laplace trans-
form and consequently, we have a result recently given by Saxena et al. [9). Fur
ther if we take n=—a, =—p, we obtain the result due to Arora et al. [I] which
itself is a generalization of the result given by R. Raina and V. Kiryakova [3]
to which it reduces for a=c=1, b=d=0,
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