Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ON THE ADMISSIBLE CONTROLS FOR SINGULARLY PERTURBED
LINEAR SYSTEMS*

IORDAN I. SLAVOV

A linear control system containing a real parameter ¢ in some derivatives is considered. The mul-
tivalued map "e— set of admissible controls” is investigated, where admissible controls are those
that drive the state to a target set at fixed final time. As an application an estimate for the margi-
nal function of an optimal control problem is obtained.

1. Introduction. Consider a singularly perturbed control system with a “small”
nonlinearity on the right-hand side

(1) x = A](t)x+ f12(t)y + Bl(t)u + ef(x; uy t)’ X(O) = xo‘
sy=A3(t)x+A‘(t)y+B,(t)u+-sg(x,u. t), y(O) =),
where X€R", yER™, u¢R* t¢[0,T), T>0 and £>0.

The set of controls is

U={u(-) — measurable, u(f)¢V for a. e. £¢[0,T]}, V=R

Let C.cR™+" be a “target” set, depending on e¢=0. We denote by (xg(u)(-),
v(#)-)), €0, any solution of (1) corresponding to the control 2¢U. For £>0 let
F(e) be the set of admissible controls, i. e. F(e) consists of all #¢U that drive the
corresponding solution of (1) at the moment 7 to C,, i. e.

Fe)={ueU|(xuXT), y(uXT))€Ce}-

In this paper the properties of the multivalued map &= F(e) at e=0 are investi-
gated. :

Taking €=0 in (1), one can formally define the set F(0). However, in this case
the map F(¢) is not upper semicontinuous at ¢ =0. Therefore, in Section 2 we derive
F0) in a special way and obtain that F(s) is c-upper Lipschitzian at e=0 with
ag(0,1).

In Section 3 we suppose that f==g--0 and the "target” set does not depend on
e (i. e. Co=C, €0). An estimate of the Hausdorff distance between F(e) and F(0) is
derived. This estimate is as that for the attainable set of (1) found in [1].

In Section 4 we present an application to optimal control. It is proved that the
optimal value of an optimal control problem is a-upper Lipschitzian at ¢=0 for every
a€(0,1).

2. An upper estimate. In the sequel we use Dontchev’s result (2] which we pre-
sent in a form appropriate for our purpose.

Let L7(0,7), 1<p=co, be the usual spaces of functions with p-integrable norm
and let | - | be the Euclidean norm in R’ and [I-ll, be the norm in L?(0, 7). Denote by
B the closed unit ball in R"*™ and by proj.C the projection of C—=R"™ on R". Let
(X.,||-|) be a linear normed space, U< L=(0,T) and let P: UZR"™ and Q: U=R™™
be multivalued maps. Given C, DX and d¢ X denote
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SERDICA Bulgaricae mathematicae publicationes, Vol. 16, 1990, p. 42-54



. . admissible controls for singularly perturbed linear systems 43

dist (d, C)=inf {||c—d|||c€C}, d(D,C)=sup {dist (d,C)|d¢ D},
hausd (D, C)=Hausdorff (D, C)=max (d(C,D), d(D,C)),
p(Q, P)=sup {d(Q(u), P(w))|ueU}, P(U)=UP(u), ueU,
dom P={u¢U|P(u)+@}, diam (U)=sup {|lu—v|||u, vecU}.
If X=R"", we use the same notations for dist (-,-), d(-,-), hausd (-,-) and diam (-),
but when X=L7(0,7) we add an index p, i. e. dist,(-,-), d(-,-), hausd,(-,-) and diam(-)-
We arc interested in the properties of the map
FP,C)={ueU|Pu)N C=}.
Theorem 1. Let C=R™™ and P. U= R"™™ be such that
2 U is bounded and convex, C and graph P are convex.
(3) There exists a real number a>0 such that
C+y)NPWU)+Q for every y¢aB.
Then for every 1=p<co, every set D—R"*™ and every multivalued map
Q: U= R"™™ with dom Q=dom P
(4) d,(F(Q, D), F(P,C))=(diam,(U)/aXp(Q,P)+d(D,C)).

There is an important remark to Theorem 1.
Remark 1. A sufficient condition for (3) is

(5) (PU)NintC) U (int AU)N CO)F D.

We shall use also a proposition ([2]) closely related to Theorem 1.

Proposition. Let U and P satisfy (2) and let the point c¢P(U). Suppose
that the constant a>0 and the point d¢ P(U) are such that
(6) d+a(d—c)/|d—c|eP(U).

Then for every 1 =p=<co and every d=0c+(1—0)d, 0¢[0,1] we have

d(F(P, c), AP, d))=(diam(U)/a) | c—d|.

Throughout the paper we assume that ;

(Al). All eigenvalues of A,(f) have negative real parts for all £¢[0, 7] (which is
denoted by Rel (A, (£) <0, £€[0,T]). The entries of A(f) and Bj¢) are continuous.
Moreover, the entries of A,(f) and By(f) are Lipschitzian on [0, 7], the entries of
Ay(f) A;'(t) and A7'(f) Ay(f) are continuously differentiable on [0,7].

It is known from Flatto and Levinson [3] that ReA (A,(£)<0, £€[0,7] imp-
lies existence of positive &, o and o, such that
(7 | Ye(t,5)| <0, exp (—o(t—s)/e)
for all O<e<¢ and 0<s<t=T, where Y.(f,s) is the fundamental matrix solution of
ey=A,(f)y, principal at {=s.

Condition (A1) implies existence of A;'(f). Taking €=0 in (1), we obtain the so-
called reduced system
®) x = Ay(f)x + Bi(tyu(t), x(0)=x°, u(-)€ U,

Ay=A,— AT Ay, By=B,— AA7' By

Let R(f), t€(0,7] be the attainable set of (8). Following A. Dontchev and

V. Veljov [4], we define

Kolt)= (5, )€ R | X €R(OLY € — A7 (O) Aft)x-+ ] exp (Ae)s) Bo(t) V),

where the integral is Aumann’s. As shown in [4], K,(f) is the Hausdorff limit for e—0
of the attainable set K(e,f) of (1) at £¢(0, 7] when fe= g=0.
Suppose also that
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(A2). V is compact and convex, C, is closed and con§ex and
(K(T) N int Co) U (int Ky(T) N Co)+=D.

(A3). The functions f(x,v,¢) and g(x,v,t) are measurable in £¢[0,7] for every
X€R", veV and continuous in (x,v)¢R*XV for almost every £€¢[0, 7). There exists
I(-)€L=(0, T) such that

lf(x, v, 8) | +| g(x, v, £) | <UEX1 +| x| +| v])

for every x¢R", v¢V and almost every £¢[0, 7.
Let x,(u)(-) be the solution of reduced system (8) with control #¢ U and

RO)={ue U| x,(a)XT)€proj{Ky(T) N Co)}-

Then the following theorem holds:
Theorem 2. For every a¢(0,1) and every 1<p<c-o there exist L,>0, ,>0,
such that for every e¢(0,¢,)

dp(F(E)r F(O»:‘/: Ll(‘P(eu 0.)+ d(Cg, CO))-

where ¢(g,a)=¢*+exp(—oe* ') and o is as in (7).

The following lemma is used in the proofs: :
Lemma. There exists a constant M>0 such that for any c¢(0,¢) (¢ is as in

(7)) and u',u?¢ U (possibly depending on &)

max | x (' )(t)— xo(u?)(¢) | < M[e+max ( f B, (s)(u'(s)—u¥(s))ds |
0<t<T 0<t<T 0

+| j Ay(5) A7I(s) By(sXuX(s)—uX(s)) ds )] -

Proof. The proof is similar to that of the analogous lemma in [1], but for com-
pleteness it is given here. Denote

A= x1— 2= xl X = xoWN-), ¥2= — A7 (Agx?+ Byud)

Ay=yi—yi=ywX-)—yi(-), Bu=u'—u.
Then

Ax(t)= g"A,(s) Ax(s)ds+ {’ Ay(s)Ay(s)ds+ {t By(s)Au(s)ds+¢e bftf(x:(s), u'(s), s) ds,
AY(E)=Y(£,0) yo+ {' Yi(t, 5) Au(s) Ax(s) ds+— j Ydt, s) By(s) Au(s) ds

L [ YA65) As)yHs) ds— YO + [ Y(t5) glal(s) w(s), 1.

Furthermore, 3 4
(9 Ax(t)= ‘[ Ay(s) Ax(s)ds + { By(s) Au(s)ds + 8‘[ flxy(s), d'(s), s)ds

+([’A,(s) Yi(s,0)y0 ds+ A"A,(S) [—:—j Ye(s, ) Ag(t) Ax(t) dt

+ —:— j’ Ye(s,7) Bfr) Au(T) dt——:—- j‘ Y(s, 7) A(¥) yX(x) di—y¥(s)
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+J Y5, %) glxi(x), w'(x), 1) d) ds.
0
Using (7), (A3) and the boundedness of V, for an arbitrary u¢U, we have

X S M1+ |2 0) s+ [ yaXs) | ds),

t
| yu)t) | = Ma(1 +(1/€) [ exp(—o(t—s)/e) | x(u)s) | ds).
Using the second of these inequalities in the first one and applying Gronwall’s lemma,
we find that maxo,<r|x(2)¢#)| and maxo—s—7|y.(u)?)| are bounded uniformly in ¢ (0,¢)
and u¢U. Then, by (7) and (A3), we get

(10) e [ FR)us).5) ds|= M,

(11) | [ A(s) Yo ) @0 s [ M, [/ As)| [ exp (—os —)/e) deds < M.
Also from (7) we derive
(12) | Ax(5) Yils, 0) yods < My
and ;
;(l/e)dﬁ;f Ag(S) Ye(s, 1) Ag(t) Ax(t) drds |
(13) <(1/6) M [([1A4s)] exp(—o{s—1)/e) ds)| A | Ax(2)| s M, f | Ax(s) ds.

In the sequel we use the following estimate. If L(-) and n.(-) are arbitrary (vec-
tor) functions with supeso || {el|w <<+ o0, then

(17¢) {' { Ag(8) Yels, 1) {r) drds +nd(t) | = | f (‘f' Ag($) A7Y(s) o—"s Ye(s, 7) ds) Le(t) dr+n(8) |
<1 A AT O LD dr—nilt) [+ M, [ Y.(t,7) o) | e
+Mxoof(j| Yi(s, 1) | ds)| Cdr) | dT= M, e +| j Ay(8) A7V(s) Ll s) ds—nu(t) .

Using this inequality, we obtain

(14) (1/¢) j J Ay(s) Yi(s, ) By(t) Au(t) drds |

t
= Myt + max | [ Ay(s) A7Y(s) By(s) Au(s) ds |
<sIis 0
and

(15) 1(1/€) jJ’A,(s) Y(s, ) Ay(x) yX(t)dvds + j Ad(s) yX(s) ds | <My e.
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Applying (10)—(15) to (9) and using Gronwall’s lemma, we complete the proofm
Proof of Theorem 2. Let for every u¢ U Py(u)=(x(u)T),y(u)T)), €0 and

Pu) =xuXT) X (—A7(T) ALT) xi(@XT)+ | exp(A(T)$) B(T) Vds).

We want to apply Theorem 1 to P, £=0. Obviously dom P;=dom P,=U, £>0. More-
over, the integral in Py(u) is a convex set and x,(-)7) is a linear map. Hence P,
has a convex graph and condition (2) in Theorem 1 is fulfilled. By Py(U)=Ky(7T) and
Remark 1| condition (3) is also satisfied. Now we shall estimate p(P, ), > 0.

Choose «€(0,1) and 1<p<co. Let &,>0 be such that g =e and &} <T (where

€ is as in (7). Take u¢U and let v€ V be arbitrarily chosen.
Denote

vﬁ(t)z{ I_I(T—St), te[0, T/e),
v , LE[T/e, + =), €€(0,¢)).
Let
400
Xo=XouXT), Y= —A; T) A«(T) X, + {exp (A(T) ) By(T) vs)ds.

Then (xo.¥°)€ Py(u). From the Lemma it follows that for every e€(0,&,)
(16) max_| x(u)t)—xouXt)| < Me.
o<t<T

~ Now let Ve solve ey = A(t) y+By(t)ult), y(0)=0 and y. be the solution of
gy =AT)y+ By(T) ue(t), y(0)=0.
Denote Ay.=yVe—Ye AA()=Aft)—A(T), ABy(t)=By(t)—By(T). Then some
standard computations give us

(A7) Ay T)|s(0u/e) Tf‘cexp (— (T —t)e) | AA (D) yelt) + ABy(t) udt) | dt
F(Ve) max (| AAD)|+|ABK8)|) | exp(—o(T—1)/e)dt=Nyfexp(—oes)+9),
T—e®<t<T T—-s® .

where N,>0, N0 are constants. We have
T
(18) |ye@)T)—y; = Y-(T,O),V°|+l1[ YT, t) g(xu)t), u(t).t)dt |

+ (1/e) ([T YT, 1) Aft) x(t) dt+ A7\ (T) AT) xo |+ Ay(T) |

+1(1/e) exp (A(TXT—1/e) BT u(t) dt ~ [ exp(A(1)5) BAT) vis) ds .

From (7) A
(19) | Y(T,0)y°| s N; .| f[ YT, 1) g(xdu)t), u(t), tydt | <N, e.
After an integration by parts we get

) L [VAT0 A %X dt+ AT ALT) oS Nl 4 | xlaXT) =)
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Furthermore,
@) 1(/e) fexp (A(TXT—8/8) BAT)ult)dt— | exp(ALT) ) BAT) vls)ds |

=Njexp(—oe"1).
Finally, from (16)—(21) we obtain
| ye(uXT)—y; | =Ni(e® + exp (—oe"")) = N:g(e, a).

This, together with (16), gives d(Pu(u), Py(u))<No(e,a) for every £¢(0,g,) and
every u¢U. The proof is completed m

Remark 2. Theorem 2 holds for a more general system than (1), namely for
the system with nonlinearity depending on y

x=Ay(t) x+ Afl) y+ By(t) u+ef(x, ¥, u, £), X(0) = x°,

ey = Ay(t) x+ Ay(t) y+ Bo(t) u+eg(x, v, u, t), ¥(0)=y°.
Then we need more restrictive conditions than (A1) and (A3). More precisely, we
suppose that in (Al), instead of Rei(A4,(f))<0, £¢[0,T], we have
(-) There exists a constant p>0 such that for every yve¢R™, £¢[0,T)
(BAO=—n|y

Instead of (A3), suppose

(A3'). The functions f(x,y,v,f) and g(x,y,v,t)are measurable in £¢[0, 7] for every
XE€R", y€R™ veV and continuous in (x,y,7)€R*™ XV for almost every £¢[0, 7]
There exists m(-)€ L=(0, T') such that

: Sy vt) + gy ) [ SmE)1+| x|+ |y |+ 7))
for every x¢R", y€¢R™, ve¢V and almost every £¢[0, T). Then, by [5], it follows that
max | x(u)(¢)| and om::xrl ye(u)t)| are bounded uniformly in €¢(0,e) and u¢U. Then
t <t<

» <i<
0tshesproofs of the Lemma and Theorem 2 are one and the same.
3. An «-Lipschitz property. In this section we consider the system

(22) x=A\(t) x+ Aft) y+By(t)u, x(0)=x",

ey = Ayf) x+ A8) y+ Bty u, y(0)=y°, t¢[0,T), £>0, ueU

with a constant target set C. We prove
Theorem 3. For every ut(0,1) and every 1=p<co there exist constants
Ly>0, £,>0 such that for every £¢(0,¢y)

hausd ,(F(g), F(0))< Lje".

Proof. Choose p¢|[0, «c)and a€(0,1). By Theorem 2 it is sufficientto proveonly
that there exist Ly>0, €,>0 such that for every &¢(0,¢)

(23) d,(F0), F&)= Lye®.
Let u,¢F0), i. e. there exists an integrable function vy(.), vy(f)€V for a. e. £¢[0,
+ o0) such that if

Xg= XltoXT), Yo= — ATHT) ALT) ot | €xP(ALT) $) BAT) ils) ds,



48 1. 1. Slavov

then z,=(xq,¥0) € Ko(T)NC. 5 +

Step 1. Let a=ap and €,>0 be such that e;<¢ and e3<7 (where & is as in
(7)). Define the control !
24 _§ uol#) t€[0, T—e*),
9 WO ar— ey (T
for £¢(0,&,). We shall prove that there exists a constant G,>0 (independent of u, and
7,) such that for every £¢(0, &)

25 a) | xg— Xt )T) | <Gpe®,

(25 b) | Yo—ye(e)(T) | =Gyee.

The inequality (25 a) follows from the Lemma.
Let Ay. be defined as in the proof of Theorem 2 (see the rows between (16)
and (17)). With arguments analogous to those in (17)—(21) and using (25a), we get

| Ay(T)| < Gy(e*+exp (—oe“1)) = Gyo(e, a),
| ye(#eXT)—¥o | = Gaole, a).
Since ¢(¢,0)<G,e* (and G,—G, do not depend on u, and 7,), we obtain (25).
Step 2. Suppose that Ky(7)0 int C+.
In the sequel, for every D=R"*™ and a>0, we shall denote
|Dle={2¢D|2+aB=D}.

Choose a>0 so that Ky(T)N |CleF@. Now, let g>0 be such that e,<min(l,s,)
and 2G,e3<a.

Case 1. Let zo=(X0 Vo) €]|Cla- Since (25) is fulfilled it follows that (x.(u)T7),
v(u XT)) €C for all £€(0, &y). This means that u¢ F(e). Moreover,

| 4e—tho| |, = Gy(%)"* = Gige®.

where G, do not depend on u, and v, Hence (23) it proved.

Case 2. Now, let zy=(X,y)€C\Cl.. We shall use a simple fact which for
completeness is presented with a proof.

Sublemma. Let H and K be closed and convex subsets of R"t™ such that
KNint H+@ and KN H be bounded. Then there exists a constant b,>0 such that
for every 0<b<b,

hausd (K 1 H, K0 JH[»)<(diam (K | H)/b,)b.
Proof. Take b,>0 such that K |H[,+@. Let 0<<b<b, and let z¢ (KN H)\]H],
and z¢K]H|,, be arbitrarily chosen. Let

z,=(1—2)z+ Mz €0 Hl,.,
where 0 |H|, is the boundary of |H[, Obviously the point z, is unique and also
dist (2,0 H)=b. We shall prove that
(26) 2,4+ MboB H.
Let w,€2,+MboB and let @,=z+(w,—2,)/ky Then |w,—z| b, i. & W,€2+b,B
< H. But O £
Wy =2+ MWy —2)=(1—=2,) 2+ Nw, € H,
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hence (26) is proved. Therefore A,b,<b, i. e. »,<b/b,. This means that
|z—2z,| =1, | 2— z| <(diam (K ) F1)/b,) b
and the Sublemma is proved [ :
Take €€(0,¢,) and let b=2G,e". Denote by 25=(x, v) the point from K(T)N ]C[,
for which
| 2g—25 | =dist (20, K(T) 11 1CL,).
Then, by the Sublemma, it follows that
(27) | 2o—25 | <(diam (K(T) N C)/a) b=Gge" .

Let P,: U=ZR"™™ be the set valued map defined in the proof of Theorem 2.
Let apply the Proposition for the maps

F(Pyzy)={u €U 2o€ xo(uXT)X(—ATNT) AyT) x, (uXT)+1(T))},
and
RPy.z5)={u €U | z5€ x(u)T) X(— A7 (T) A(T) x(u)(T)+ I(T))},
where T)= | exp(A(T)s)B(T)Vds and e¢(0,&;). Then we find us¢U such that

X (ug)T)= x5 € proj(Ky(T) N C), i. e uf = F(0), and
| wg—ug | ,<(diam(U)/a) | z,—25 .
Using (27), we derive
|| ug—us ||, < (diam,(U)/a) Gye* < Ge°,
where G.>0 does not depend on u, v, and £¢(0,¢,). In the above inequality we use
the fact that e®=g*?<g® which follows from g<g,<1.
An integrable function j(-).v§(#)€V for a. e £¢[0, + o), is associated to y§
Define
g SR ARG O
v((T—12)/e), te[T—e, T).

Then, by Step 1, we find
| xg—x(uXT) | =Gie®, | ys—ye(uXT) | =G,
S0 that y
: 25— (XX T), Ye(uXT)) | <2Gye”.
Therefore (xo(u)T),ye(u:)XT)€C, i. e. v.€ F(e). On the other hand,
|| Wy — U ||pS|' Uo—ttg || pt || 45— e H,}G.‘e“-f-(]b(e—“)'/’;_’(ine“

and (23) is proved in this case.
Step 3. Now, suppose that int K(7)C+S and choose a>0 so that |Ky(7)[s

(1 C4@. Take &,>0 such that e;=<min(l,e) and 2G,s%<a (where G, is as in (25)).
Case 1. Let z,=(xp Vo) € |Ko(T)[3a. Then for every £¢(0,¢,) there exists a cube
N.=int K(T), which is centered at z,=(x,,y,) and have vertices z!=(x’, ) such that

|2,—2! | =4G,e", i=1,7r, r=2"+" It is a standard observation that

1 Cepauxa, kn. 1
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=1 °
Since z!=(x!,y)€ K|(T), there exist controls #/¢U and integrable functions v/, v(¢)
€V for a. e. £€[0,+ o), i=1,7 such that

xt=x(ul(T),

(28) if |zi—z!|<2dye i=1,7 then z,€cof2);

+ oo
Vi=—A7T(T)A(T) x£+bfexp (A(T) s) B(T)vi(s)ds.
Let us fix i¢{1,2, .. r} and apply again the Proposition (as in Step 1) for set

valued maps

F(Py, zo)={u € U| 20 € xo(u)(T) X(—ATT) ALT) x(uXT)+1(T))},
and

F(Py, 20)={u e U|zl€ x(u)(T) X(—A7(T) A(T) xo(uXT)+ (T))},
where €¢(0,¢;). Then we find a number G,>0 (independent of #, and v,) and
controls uf¢U,i=1,r, £€(0,e) such that

xfuXT)=xi, i=1,r,
and
| uh—ttg ||, < Gy | 26— 20| < Gyo®, i=1,7.

Now, let

3(t)= { ut), £¢[0,T—8), .
v(T—1)e), te[T—esT), i=1,r.

By Step 1 ((24) and (25)) it follows that
| x@T)— x| Gose, | yu@iXT)—yi |<Gee”, i=1,r.

Hence, by (28), there is p/=0, ): Bi=1 such that
=1

(ko) = % BleiXT), y@XT)).
Define
alt)= £ pLELD),
then (xg Vo) = (Xe(te)T), Ye(tteXT)), i. €. uc€ F(e). Moreover,
| to—te < to— % Bt +1 2 B al— ¥ L= Guue+ Gl ),

so that || uo—u.||,< Gy,e°, where G,, does not depend on u, and v, Therefore (23) is
proved in this case. ¥

Case 2. Let z0€¢ K(T)\JKoT)z0- Take £€(0,¢5) and let b=6G,e*. Denote by
2= (xg,ys) the point from |Ky(T)[, N C for which

| 29— 2§ | =dist (2, JKo(T)[, 1 C).
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Then applying arguments analogous to those in Step 2. Case 2 (with the Sublems-
ma), we find a number G,,>0, independent of u, v, and £¢(0,&,) and a control
us € F(0) such that

(29) ([ to =5 llp < Grae®
Since o
(zE€R™™| | z—28|<6G e} = K(T),

we have Case 1 for 25=(x{,y5) and can find a number G,3>0 (independent of #, 7o
and €¢€(0,¢,)) and u.€ F(e) such that

(30) || e 15 |, < Grae®

Hence, (23) is proved by (29) and (30). The proof of the theorem is completed ®

Remark 3. Using the Proposition and arguments like those in the proof of the
Sublemma, we are able to prove that if

H={u¢U|x,(uXT)eproj, (KyT)nintC)U (int K(7)NC))}

then for every 1<=p=-co F(0) is the closure of /A in L?(0, 7). .
Remark 4. Condition (A2) implies F(0)==@. From the proof of Theorem 3 it
follows that Fe)=( for ¢ (0, gy).
In the general case the number « in Theorem 3 should bhe less than 1 which is
shown by the following
Example 1.

x=u, x(0)=0, T=1, u(t)¢[—11], : y

ey=—y+u, Y0)=0, C={(x,y)€R|x+y=0}.

We have Ky(1)=[—1,1]x[—1,1]. Since the
system for £¢>0 is normal, by the bang-bang
principle every point at the boundary of Kie,
1) can be reached by means of a bang-bang 5 1
%ontrol having one switching point t¢ [0, 1].

ake

--_.{ &

il B, 26[0»7)1 ‘ z; i
u‘(i)—{ —B, t€[t, 1], p=1 or —1. (1) i

Then, setting r(e,t)=exp((t—1)/e) we get sl e
the boundary of K(g, 1) =

xe(1)=B(1 + 2eln(r(e, 7)),
Ye(1)=P(2r(e, )—exp (—1/e)—1), T€[0, 1].

Depending on B there are two points from both the boundary of K(g, 1) and C’
For p=1, the point z} =(x},y}) which belongs to C and the boundary of K(g,1),

satisfies z/—(1, —1) as e—0 and hence r}=r(g,t.)—0 as e—0. If uy(f)==1, then x(u,)(1)

-

Fig. 1

1
=J ldt=1 and since (1, —1)€C, then u,¢/M0). Let e>0 and u¢Fe) be arbitrarily
chosen. We have for 1=p <o that

|4 —u, ), 2 {‘ u(t)—uy(t)| dt =1 —f u(t) dt =1 —xu)X1) 21— x} = —2eln(r}).
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Consequently
L hausd, (F(e), F0) = —2(lnr} )~ + <o as €0,

4. An application to optimal control. Consider the following problem depending
on the singular parameter ¢

31) Iu)= f L(x(t), u(t), t) dt — inf
subject to
x=At) x + Aft) y+ By(t) u, x(0)=x°,

ey = Ayf) x + A(t)y + By(t) u, y(0)=y",
(xT), y«T))€C,

(32) U={u(-) — measurable, u(t)¢V for a. e. £€[0, T}}.
For €0 we get the reduced system

(33) x=Ay(t) x+ By(t) u(t), x(0)=x°

and the corresponding limit problem is (31)—(33) and

(34) X T)€ proj. (Ko(T) N C).

Suppose that conditions (Al) and (A2) are fulfilled and moreover

(A4) L(x,-,t) is convex for every x¢R" and every ¢¢[0, 7]. The function L(x,7, -)
is measurable in [0, 7] for every x¢R", v¢V and there exists a function ()€ L0, T)
such that

| L(xy, vy, 8)—L(Xg, gy £) [SUEN | 21— 23 |+ 01— 22 )
for every X, x,€R", v, 7,¢V and almost every #¢[0, 7). There exist x¢ R", v¢V such
that L(x,v, -)€LY0, 7).

Let val(g), e=0 be the optimal value of the above problems.
Theorem 4. For every a¢(0,1) there exist Ly>0, €3>0 such that

| val (g)—val (0) | = Lje"
for every e¢(0,¢;).

Proof. Choose a¢(0,1). Let u(-), =0 be the optimal control which exists (see
[6], p. 389), i. e.

val (€)=/,(), €=0.

By Theorem 3 there are L,>0, €,>0 such that for every e¢(0,e,) there exists
u. € F(e) such that

: I| tte—tag ||y = Lat®.

Then by (A4) and the Lemma it follows that

4118 . val (g)— val (0) = /u(te)— I {to) < I (tte)— I,(tto)
'\‘M (SE:‘axT ’xl(utxt)_ xo(”o)(t)l'*'” ut—uo”g)s Lgec»

when €€ (0, ey).
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With analogous argument for u#. we find
val(0)—val (e)<Lze?, €¢€(0, g,),

which completes the proof m

Remark 5. When we define the limit problem (for e=0) the most important
question is how to choose the terminal condition. If we take (34), then. the optimal
control problem considered is well-posed, i. e. val(e)—val(0) as € +0. But replacing
K(T) by the set

K(T)={(x,3)€R™™ | x ¢ R(T), y ¢ —A7(TXALT) x+By(T) V)}

(which results from the formal substituting e=0), we may obtain j ill-posedness
Consider, for example, the following problem

bf lu(t) |® dt — inf.

: x=u, x(0)=0, T=1,
&Y=~y +t, ,(0)=0, u(t)e[—11],
5);2=_2.Va+”v ¥4(0)=0, C={(x.y1,¥2) ER® |y, —2y, = —1/8}.
With analoguous arguments like in Example 1 (see also (7], p. 79) we find that

Ko(D)={(x. 3, 3D € R [x|=1 [nIS L ya€ly (1) —5 =4 =1 5D

and KD ={(x.y,3)€ER3| | x|=1, y,=2yp,}.
The limit problem
Y2
1
J‘lu(t) |’ dt =l lnf 1 ’\\$
N
. % proj K, (1) 'R
x=u, x(0)=0, .'=1, u(t)e[—1,1], 05
with the following terminal condition : )(
a ]
xo(1)€proj, (K1) €)= [—1.1] o e
has a solution u,~=0, val(0)=0. Since
K(1)nC=@, see fig. 2, the value of the oroi & (1) |08
limit problem with a terminal condition

Xo(1) € proj(K(1)N €) _
e Fig 2
is val(0)= + co.
We finish with an example showing
that in the general case a<I.
Example 2. Minimize

j'[u(t)—l | dt

Subject to the same system and ‘arget set as in Example 1, i. e. for 60
x=u, x(0)=0, T=1, a(t)¢[-1,1],
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gy=—y+u Y(0)=0, C={(x,y) ¢ R x+y=1}.
The limit problem for =0 is

Ahu(t)—l | dt — inf,

x=u, x(0)=0, u(t)e[—1,1),
xo1)€proj ([ —11]X[—11]1 €)= [—1.1].

It is clear that the optimal control for the limit problem is u,=1 and val(0)=0.
Using the same arguments as in Example 1, we find

—}:— (val(e)—val(O)):—le—j' \ugt)—1|dt — + o as € — 0.
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