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UNIFORM ASYMPTOTICS OF THE SPECTRAL FUNCTION FOR SOME
GLOBALLY ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS

G. E. KARADZHOV

We consider a class of globally elliptic essentially self-adjoint pseudodifferential operators in
L2(Rn). An asymptotics of the spectral function e(A, x, x) as A —+oco, which is uniform with respect
to the parameter x ¢ R#, is proved. Near the caustic points this asymptotics is expressed in terms of the
Airy function. When the periodic bicharacteristics of the principal symbol are not too many a second
term of the asymptotics is obtained.

1. Introduction and statement of the results. Let A=a(x, D,) be an elliptic
essentially self-adjoint pseudodifferential operator in L2(R") with a symbol

a(x, &)~ E:’e‘“("’ 3)

where a,(x, &) is C=(R?"|0) positive homogeneous function:
a (VA x, VA E)=A"%a(x, E), A>0, k=0.
The spectrum of this operator is discrete and the function
eh X ¥)= X 0fx)0Ay)

N
s
is called spectral function of the operator A. Here 4, — 4 <o are the eigenvalues and
¢; — the corresponding orthonormalized eigenfunctions. The theory of such operators
is developed in [3].

The aim of this paper is to find out the asymptotics of the function e(A, x, x) as
L— 4 co, which is uniform with respect to the parameter x ¢ R”, We assume that the
principal symbol p(x, &)=a(x, §) satisfies the following conditions:

(1) p(x, §)>0 if (x, §=+0,
@) plx, =8 =plx, & if x=0,
(3) 0? p(x, €) is a positive definite matrix if (x, &)==0.

Example 1. The function p(x, £)=£82+V(x), where V isa positive definite qua-
dratic form, satisfies the conditions (1)-(3).

The assumptions (1)«(3) are sufficient to find the main term of the uniform asymp-
totics with an exact estimate of the rest. The second term of the asymptotics is ob-
tained if in addition to (1)-(3) the following hypotheses are satisfied:

Let n>1 and ®(y, n)=(x(¢, ¥, n), &(t, ym)) be the hamiltonian flow of p, lying
on the energy level p(y, n)=1.

(H,) We say that the point y satisfies the hypothesis (H,), if 1—p(y, 0)=8>0 and
if the measure of the set S(y)={neR":p(y, n)=1, x(¢, y, n)=y for some
t=0} is zero.
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(Hy) We say that the point y satisfies the hypothesis (H,) if p(y, 0)=1 and if the
bicharacteristic ®‘(y, 0) is not periodic.
From the homogeneity and ellipticity of the symbol p(x, &) it follows that z=2(x)
—=d, p(x, 0)%0, if x=0, in particular, the set of the points, satisfying the hypothesis
(Hy), is open.

Example 2. Let p(x,€)=E*+ s a’x? and a;/a; be not a rational number for
k=1

some i-+j. Then the points x ¢ R”, p(x, 0)<1—38, 8>0 satisfy the hypothesis (H,) and
the points x € R”, xi=0, x;=0, p(x, 0)=1 satisfy the hypothesis (H,).

Now we can formulate the main results of the paper. It is convenient to write the
asymptotics of the function E(A, yAx)=e(}, yAx, JyAix) as L — +co. All asymptotics
and estimates are uniform with respect to the parameter x. Besides, if thé hypotheses
(H,) or (H,) are not satisfied, then in all estimates the quantity 0(1) should be replaced
by O(1) as A — co.

Theorem 1 (the case p(x, 0)<1—3, >0). Let the points x satisfy the hypo-
thesis (H,) and n>?2. Then

(C)) E(, VAx)=a(X)A"2+ 121 (x)+ o(1)), A—+ =2,
where
5) a,(x)=(2r)""vol{&¢€R": p(x, §)<1},
. d
(6) b,(x)=—(2r)""[Re a,(x, &) Efk‘

and ds is the Riemann volume on the hypersurface {&¢R":p(x, §)=1}.

Theorem 2 (the case 1—3<p(x, 0)<1—A-12+c, >0, 8>0). Let the point x,
satisfy the hypothesis (H,). Then there exist a positive number & and a neighbour-
hood 1) of x, such that the asymptotics (4) is valid, uniformly in x¢ |, 1-3
<p(x 0)1—A—12+e,

Theorem 3 (the case 1 —const. A—2<p(x, 0)<1). Let the point x, satisfy the
hypothesis (H,). Then there exists a neighbourhood |) of the point x, such that for
every x €\ with 1 —const. A2 <p(x, 0)=1 the following uniform asymptotics holds

@) E(h, VAX)=a,(h, XA+ by(hy XMOVYb,(X)+ 0(1)), A+ oo,
where

(8) a(h, x)=(2r)""vol{& ¢ R": p(x, E)<1}B—"? f,(—B\?A),

9 ba(hy X)= fa—a—BoA?),

(10) b (x)= —(2r) "V (E(x) 2, 2)"° "3 Re a,(x, 0) trace E(x),

E(x) is the matrix d7p(x, 0) and V, — the volume of the unit ball in R”™. Further,
an 1(8)= [ Ao +5)0"* do,  Aio) = ~ I i+ 4y

being the Airy function, and

(12) B=B(x)= By(2)+0((1—plx, 0)") as 1—p(x, 0)—0,

(13) By = By(x)=2(E(x)z, 23~"3(1—p(x, 0)).

Rematk 1. The functions f, n=0 are positive and satisfy the recurrence
relations:
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(14) £(5) = = Sfaal&) +f_o(5) 1=22; fis) = JAito)do
(15) f1(5)=n2'3{—-4-18 5(Ai(4-'5 5))2 4+ (Ai'(4~"3s5))?}.
Moreover, they decrease, if =1 and :

(16) fuS)=(=$YP+R(s), §——co,

where

(17) Ry(8)=0(ls =),  Ri(s)=0s|""),  Raa(s)=0(s{*""),

Rap+1(8)=0(s*—>2), k=1.
Remark 2. The function B(x) from (12) can be calculated exactly. Namely,

(18) B(x)= ("3 W(t(x), &x), x)P2,

where

(]9) "’(tv &! x)=t+¢(t' é' X)—E_,X,

(20) 09 +p(x, 0,0)=0, o0, § x)=8

and the point (#(x). &x)) is the critical point of the function y for which
1) 1—p(x, 0= G (E(x)z, 2)=0(), E=-3 t+0(), t—0.

Corollary. If 1—constA=23<p(x, 0)=1, then the asymptotics (7) is fulfilled
with a more simple coefficient a,:

(22) a, (A, x)=(2r)""V (E(x)z, 2)"® (det E(x))~'2f,(—BA%).

Theorem 4 (the case -1=p(x, 0)<1+const. A=?3). Under the conditions of
theorem 2 we have the asymptotics (7), where the coefficient a, is given by (22).
Theorem 5 (the case p(x, 0)=1+A1"23%¢ £>0). It this case

(23) E(, JAx)=0(A~=), A—s+co.

3. Proof of theorem 1. Using appropriate tauberian arguments, we reduce the
asymptotics of the function E(A, JAx) to its averages:

es(hy x)= [ p(h—WE(, VAxX)dR, e)(h, X)=[ p(h—p)E (1, {Ax),

where p is a smooth, even, rapidly decreasing function on the real line, whose Fourier

transform p(f)= [~ p(h)dA has a compact support and p(0)=1.
To find the asymptotics of the function e (%, x), we use the relation

(24) [o(h— e, X, ) =5 [e™ pOUE x, y)dt,

where 1)(4 x, y) is the kernel of the operator |)(f)=e~"*, satisfying the Cauchy pro-

blem: (d,+iA ) (t)=0, U (0)=id.
According to 3], we can construct a parametrix of this problem in the form

(25) Q(t)u(x)=(21r)—"fc”"' Log(t, &, x)u(g) dE, u¢ C(“)'(R"),

where ¢ varies on a compact interval. Namely, if £ is near zero, then the phase function
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o0

¢ solves the problem (20) and ¢(¢, & x)~ Eo gx(¢, & x), where (& x)— g, (¢ &, x) is
k=
a positive homogeneous function cf degree —2k. Moreover, ¢,(0, & x)=0 if 2=1,

(26) dtq0+(d§p) (x! 0x(p)oxqo+b0(x' 5)‘]0=0’ qo(ov é' X)-‘—‘l
and
(27) b, E)=iar(x, 0.0)+ - % 5ere(x. 0.9) jroe

From (24), (25) it follows that:

(28) [p(i—p)de(, x, X)~(2m)—"=1 [O++ot. & 0-20p(h)g(t, €, x)dtdE,

where the equivalence “A(A, x)~B(A, x)” means that A(X, x)—B(}, x)=0(A|+x?)—>-
Hence

(29) ey(h, X)~A"2 [ ety gt |LE, (A x) h(E)dt dE,

where v is given by (19) and g(¢, & x)=(2r)~""! p(£)g(¢, & x). Here ¢ C3 (R") is a
cutoff function, which is due to integration by parts, with the help of the estimate:
| 0,w|=C(1+x2+&?) for large &2 ;

To evaluate the integral (29), we note that the critical points (¢, &) of the phase
function y satisfy the relations d:p=x, p(x, d,9)=1, whence, using the property
Ql(o§¢’ §)=(X’ dx(p)' we get: (D’(X, &):(X' 0x(P)’ p(x' d,(P)=l, P(x’ §)=1'

Since the rank of Hessian ¢’’ at the critical points is 2, the method of the statio-
nary phase and the hypothesis (H,) lead to

(30) e,(h x)=I(A, X)+0(A"21), A—+ oo,

where (A, X)=1y%, x)+ A" (h, x), [, (A, x)=A"2 [ePvgdtdE, gt &x)=(2r)—""1p (£)
gut, & x)u(HhE), k=0, 1 and x ¢ C3(R) is a cutoff function with x(0)=1 and small

support.
Further, we can write

@) vt & D=KI—r(t, & X)), 70, & x)=p(x, B O,r(0, & X)=—-L9,poep.

Therefore
(32) LA, x)=MA2 gMO—0o)§(c—7), g)dtdo,

where 3,(c—7) is the pullback of the Dirac measure §, (see theorem 6.1.5 [4]). Hence
the method of the stationary phase and (26), (27), (31) give

(33) 10 %)= b3 by (X2 4 0(MB-), As - o,

where  by(x)=(2r)"" 1{ 0, b(x)=—(2x)—", J, 4V (a:0pi0p| o, and 0,= Z (—1)~!

Oep|Oep|2dE A ... NdE; N\ ... )\ d§, is the Leray-Gelfand form on the hypersurface
{E€R™: p(x, §)=1}. In addition we have used the property (2).
Integrating the function /(A, xA—'?) over the interval (0, A) and using the homo-
geneity of p, we get the equality
A

[ 100 0= )= (20" [ de—(2))7" | Reayo,+0()
= p=h
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if n>2. Here we use the relation

| et ap
(34) Ima,-i--z—j;‘t.1 W_O.

which follows from the self-adjointness of the operator A.
Thus, integrating (29) with respect to A and repeating the arguments resulting in
(30), we obtain

(35) ek X)= MR N1(b,(x) + (1)), A—stoo,
where the coefficients a,, b, are given by (5), (6), and
%) ;. ()= b1 +o(1),

where p,(k):% p(ir), 0< 7 <1. In particular, taking p positive, we derive from (36)
the estimate

(37) = |EQ+oT, JAix) — EQ\, JAx) <const 2= (T+o(1)) if o<l

On the other hand, the bounds of the eigenvalues and the eigenfunctions of the ope-
rator A [3], [5] imply the estimate:

| E(h+p, (Ax) <const (1+A+u)*, >0, p¢R. Therefore,
A2
(38) ep (k)= EQ VAX)= [[ART)e+A(—nT)elp(n)dn+0(A==),

where A(uT)e=E(+nT, Ax) — E(, JAx). From (37) we obtain the estimate |A(+nT)e|
<const (1 + |p/2-1A2-1(T+ o(1)) if 0<p<<1/2. Hence (38) gives

(39) lep (A, x)—E(hs JAx)|<const A2 (T +o(1)), A—sco.

Finally, the asymptotics (4) follows from (35) and (39)."

4.Proof of theorem 2. We use the formula (29). The hypothesis (Hy) implies
that for some >0 and for some neighborhood U of xo if x€ U and 1—-3=5p(x, 0)
<1, the critical points (¢, &) of the phase function y are such that £ is near zero.
Hence instead of (30) now we can write: e (A, x)=/(}, Xx)+0(A—=), A—+ co. Further,
we have the formula (32). When p(x, 0)=1 the integrand function (3,(c—7), gs) has
the singularities. So in the considered case, 1—p(x, 0)=A—12+¢ >0, to obtain (33)
we have to estimate the rest in the formula of the stationary phase. To this end we
note, as in [5], that it is sufficient to integrate in (32) over the set |41 —o]| = c(d(x))"?,
where

(40) d(x)=1—p(x, 0).

Then in the integral (3(c—7r) g, the variable & satisfies the relations
(a1) €, d(x) S B ().

Since

(42) ¢1[8| < |0ep| =cqlSls

we obtain the estimate: [d{'a(éo(o—r), g, | = const (d(x))~/ Thus the method of the sta-

tionary phase ((7.7.12) [4]) shows that we have again the formula (33).
_Next the proof of theorem 2 follows that of theorem 1.
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5. Proof of theorem 3. Starting from (28) and integrating by parts with res-
pect to each coordinate &, we get

eolhs X)~A"2[ e g (t, (A & (A x) h(E)dt dE,

—n—1 =
where g(t, & x) =20 PO_(_£h.yg(t, & x)+iE0eq(t, &, x)}. Using the hypothesis

(Hy) as in the proof of theorem 2, we obtain

(43) ep(h, x)=1I(A, x)+0(A—).
where
(44) IA, x)=L, x)+ 1A, x)+A7, x),
(45) LA, x)=An2tk fervo (t, & x)dtdE, k=0, 1,
(46) J(A, x)=2Am2 [eirvr(t, &, x, N)dxdE,
(2x) "

(47) alt. & %)= S o gt & x)u(t)

n

1! —n—1 >
gt & =227 P gt & x)—Eoew . ailt, & V),

(£, 8, x5, N)=0(A=1).
To find the asymptotics of the integrals (45), (46), we note that

Oy = 1—p+10.pOp — 5 ((9%pdsps Oup)+(PP0ep, Oep)+(0%p0.p, 05 P))+0(EY),
(48)
ey =] —0ep + 5 (0pd.p + 0% pop)) + (), 0.
From (19), (20), (2) it follows that the function (¢, &)—w(¢, & x) is odd, hence the
critical points of v are the points {(0, &): p(x, &)= 1} and {(+#(x). +&(x)): p(x, &(x))=1}
where (#(x), &(x)) satisfies (21). Indeed, in view of (2), (3), (42), we have the estimates,
(41), if p(x, E)=1. Therefore the critical points exist only if p(x, 0)=1 and C,d(x)
<|H(x)?<=Cyd(x) if d(x)<5, & is sufficiently small. Now the asymptotics (21) follows.
Let p(x, 0)=1. Then w(t, &, x)=t[(A(4 & X)E &)+ B(t, Ex)st+C(¢, &, x)*], where

A0, 0, x) ~ ——-E(x), BO, 0, x) = 3 E(x)z €0, 0, x)= —-§ (E(x)2, 2). There exists

~ £ L ~
an odd and smooth change of variables §—& such that (A(¢, &, x)5, §)=——2—IL‘A,(x)§’,

where 1(x) are the eigenvalues of the matrix E(x). Hence there exists an odd change
of coordinates £=1p,(1, 0, x), £§=E&(r, n, X) such that

(19) Wt & x)=tr+Y3 if p(x, 0)=1.

From the theory of the versal deformations [1], [6] it follows that the family
ct+tE2+ %3 is a versal deformation of the function &2+ £3/3 in the class 2 of all
smooth functions g(¢, &), defined in a neighbourhood of the origin having the proper-
ties: g(—t, —&)=—g(t, &), g0, &)—0. This class is invariant under the local diffeo-
morphisms (t, n)=2(¢, &) such that o(—t, —&)=—ut, &), «0, §)=(0, n).

Since v ¢ Z and satisfies (49), we conclude that there exists an odd change of
variables (¢, &) — (t, n) with the properties:

(50) t=1tp(t, m, x) E=§&(t, M, x),
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1) vt & x)=—B(x)r+m?+1Y3 if [I—p(x, 0) =53, <
where § is small enough. In addition, the coefficient B(x) satisfies (18) and the asym-
ptotics (12) if p(x, 0)<1.

Using the principle of the stationary phase and the polar coordinates n=ow, we
can write

(52) LA, X)=An2+E [ [ pit—Brstatsoign-1g. (v &)dt do,
)
where
(53) (1, 0)= fl &L, & x)J(x, oo)do
o=

and J(t, n) is the Jacobian of the mapping (50). In particular, the function c— g1, o)
is even, hence by the Malgrange preparation theorem [1] we can write

(54) &x(t, 0)=ao;+ay,T+auc?+ (12 +0'— B) f,, +10%,,.

Integrating by parts the integral in (52) and using (54), we get

(55) [(h X)= MR+ [ [oM—Be4 108 OG- 0,4T + g, 0T dO + R,
0

The coefficients a;, satisfy the formulas:
1 w5 oy 1 = L
Ao 23-(& (\/B, 0)+ gu(— /B, 0), ay, =W (8 (\/B- 0)"83(—\/8' 0)],
(56) : s
Ay = g [ 8 (0, VB)—aq,].

Since (+ /B, 0) are images of the critical points (+#(x), +&(x)) it follows from (53),
(47) that g,(+yB, 0)=0, hence a4 =a,;=0. The points (0, yBw) are images of the
critical points (0, &), p(x, &)=1, therefore (56), (53), (47), (48) give

an =@ L [ 60, (Bo)dplx, &0, VBo) K0, {Bo)do,

To compute this integral we use the relations, following from (50), (51), (48):

0 d
(57) KO m)=det (5 5
% 5 ot L ggRryE
(58) ~% g.p % (0 m)=2n it =B,

Since w—&(0, (Bw) is a parametrization of the surface p(x, £)==1, it follows that
A 2B—"? [ E0¢ plo:p|~'ds, whence
p=1

Qy, = —
(59) ay = (27) "1 2B~ vol {€ ¢ R": p(x, E)<1)}.

In particular,

(60)  ag(x)=(20)~"1 2V, (E(x)z, 2)y"(det E(x))~"? +0(B(x)) if B(x)—0.
Hence (55), (59) and (11) imply

(61) L(h x)=a,(h X)W+ R, x),
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where the coefficient a, is given by (8). Since

Ri(%, x)=i7»""’:f [ eM—Brtta*+e3) g"—1 j (1, o)dtdo, where

(62) (t. ©)=0cf1y(T, 0)+ 5 fult, 6) + 5 0afu(t, O),

we obtain analogously to (61)

(63) Ri(A, x)=irCy fro — BR23MA—1B 4(B, (A, x)+0(1))0(A"6-23),
(64) ba(hs X)=|f,_{—BA¥3) |+ A2, (— BA?R)

and C, =4 [4,(JB, 0)+4,(— VB, 0)]. In particular,

(65) Co=h,(0, 0)+0(B) as 1—p(x, 0)—0.
From (62) and (54) it follows that
1 03
Co= g B&(0. 00— P&, O+ - 5580, 0+0(B).

Since g,(t,0)= a(1)b(x), where a(t) = —:— gowy, and a(0)=0, a’(0)=0, a”’(0)=0(B), a’""(0)=0
we obtain

(66) 2¢,(0,0) - (B), 9%,(0, 0)=0(B).

Therefore C,~ -~ +55(0,0)+B). Further, P80, 0= | <%‘g'§'—ﬂ o, o)do X0,0)
jo|=1

and (53), (47), (50). (51). (26), (27) give ZBO 2D 29" 4a,(x, 0)E(x). Hence

(67) Co=i(2r)""' a,(x, 0)V, trace E(x)+ 0(B).

Later on we shall prove that

(68) 3,,(1, x)=const >0 and b (A, x)<constb, (), x).

Thus (61), (63), (64), (67), (68), (34) imply

(69) LA, x)=a,(, Xx)A"6+b, (R, X)A"S1R(by(x)+0(A17)),

where the coefficients a,, b, are given by (8), (9). Here we use the property f,o(—BA*")
~ fua(—BA?3) (140(1=1%)), which follows from the asymptotics (13), (16), (17) and
the relations (70), (77), (80) obtained further on. :

To estimate the functions /42, x) and J(A, x) from (44), we proceed as before
and use the relations:

(70) Cymax (1, |s|) =fu(8)/fa-o(s)=Cqmax(l, |s]), s=0.

Since a,=0(8) we have /,(A, x)+JA, x)=by(2, x)0(A**23) and (43), (44), (69) yield
(71) ep, (M X)=ap(h, X0+ by(Ay X)A 13(b,4(x) +0(A—17%)).

Analogously,

(72) Ie;r(l. x)|s const b, (A, X)AS=13(140(A—1%)).
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Hence

(73) NE(+0T, JAx)—E(k, JAx)|=const b,(r, x)A"5—13(T 4 0(1—1%))
if |o|/=<1. Later on we shall prove that

(74) b, (A+p, x)<constb, (A, x) if O<p<r/2

Therefore, using the formulas (38), (68) and (73), (74), we obtain instead of (39) the
following estimate

(75) les (0, x)—E(h, VAx)|<const b,(, )"~ (T+0(A—5)),

Evidently, the asymptotics (7) follows from (75) and (71). Finally we have to ’verify
the properties (68), (70), (74). First we shall prove the asymptotics (16), (17). From
the asymptottics of the Airy function it follows that

1 /. 2 lel—
fo(s):l—\/?;(—s)“’<‘cos (T(—s)3f?+%)+0(‘s| Wiy fmd
Fols)= (= )" cosl 3 (=8P )+ 08| 54) as s —oo.
Hence (14) implies that fy(s)=—s+0(|s|=>*). Similarly
(76) Jarl$)=(—8*+0(s[*=%), s——co if k=2, 3.
Now (76) follows inductively for every £=1 in view of (14). Analogously,

f($)=(—9)"?+ %(-—s)—l cos %(—S)"?+0(|s| ~5) and
f(s)= —- cos5 (—)*?+0(s|%?) as s — —co. Therefore

farri(8)=(—=s)+"2+ 0(s]*—7), s—+—co0, k=1
Further, we need the bound
@) fu($)>0
Clearly it suffices to prove
(78) Ji= T Ai(c)do>0, k=0, s,=co,
Sek +2
where 0>>§,>>8,> ... are all the zeros of the Airy function Ai(s), so s,:,—5,:3<s,
—S,+1 and Ai(s)>0 on the intervals (Sy+y, Sa) £=0. Since
Sak -
W= | Aifc)do+ | Al(28y:,~0)o,
Sgk+1 s2k+1
where 7,=255,+,—Sqp+9 then
™
(79) L= [ (Ai(o)—f(0))do,
Sk i1

Where f(6)= — Ai(25qx+1—0), if 6 € (Sy3+y 7a)-To compare the functions Ai(c) and f(o)
on the interval (sg4+y, 7)), We notice that there
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£(0)+(6—253: )f(0) =0,  Ai"'(0)+(—0)Ai(0) =0,
—0<06—28y,1, 0—285,+,>0, f(0)>0, Ai(c)>0,
f(Sqp+1) = Ai(Sa+1)=0, f(Sap1)=A¥(Sqp+1)-

Hence f(o)<<Ai(c) on the same interval. Then (78) follows from (79).
Now we shall prove that

(80) fa(s) is a positive and decreasing function if n=>1.

This is obvious if s=0. Since fi(s)=—n2-"3(Ai(4 35))*<0 and fy(s)= —f,(s)<0, we
have (80) for n=1, 2. Now (80) follows inductively, having in mind the equality

81) f)=—5 faals) n=2.

Evidently, the properties (68), (70), (74) follow from the asymptotics (16), (17)
and (77), (80), (81), (64).

Theorem 3 is proved.

6. Proof of theorem 4. Following the proof of the theorem 3, we first note
that in the case considered, p(x, 0)=1, there are not critical points of the phase func-
tion vy if p(x, 0)> 1. Therefore we can not compute the coefficient B(x)in the formula
(51) as before. But we can prove that the asymptotics (12) is again valid. Namely,
(50), (51), (48) show that :

(82) (1—p(x, 0)5 (0, 0, x)=—B(x) if |1—p(x, 0) <3,

whence the asymptotics (12) leads to g%(O. 0, xo)=—2E(x0)2(x0) 2(x0))~ 7 if p(x,, 0)
=1. Let d(x)=p(x, 0)—1. Since d(x)=(x—x,)2(x,)+0(ad?) we have the bound |[x—x,|
=<Cd(x) and the Taylor formula gives the asymptotics B(x)=(x—x,)0,B(x,)+0(a?). On
the other hand, from (82) it follows that d,B(xO)=z(x0)g—(O, 0, x,) and B(x)= —2(E(x,)
z(x,), 2(xo))"3d(x)+0(d?), so the Taylor formula yields the asymptotics (12).

Further, we have to know the smooth coefficients a;(x) from (54). The Taylor
formula and (60) give

aq,(x)=(2r)—"' 2V, (E(x)2(x), 2(x))"*(det E(x))~"2+ O(d(x)).

Since the asymptotics (65) is valid, we see that the formula (67) is also true. To esti-
mate the coefficients a,,, a,,, we note that (54) implies the relations: a,,= Bf,,(0, 0),
ayy=B0:f,,(0, 0), 0%g,(0, 0)=2f,,(0, 0)4+0(B), 9?¢,(0, 0)=60.f,,(0, 0)+0(B). Hence (66)
gives : a,,=0(B?), a,,=0(B?),a,y=0(8B). Thus we have again the relations (71), (72),
where the coefficients a, (X, x), b,(A, x), b,(x) are given by (22), (9), (10).

7. Proof of theorem 5. First let us consider the case 1+A—23+ <p(x, 0)
<148, where & is taken from (51). As in the proof of theorem 3 we obtain the esti-
mate '

(83) f’p()», X)'—=B,,()». x)O(l""‘”“),

where B,(A, X)=f, o —BA)+|f, (—BAA)+f,(—Br3). Since —B(x)A¥3=cis, ¢>0,
it follows from the asymptotics of the Airy function and its derivative that B,(A, x)
= 0(A—*), uniformly in x. Therefore (83) gives

(84) es(h, x)=00=).
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Analogously
(85) e,(h x)=00.").

Now let p(x, 0)=1+35. Then there are not critical points of the phase function
v and
(86) 10,¥ +|0ey|=c>0.
Indeed, if x varies on the compact 1+3=p(x, 0)=b, then (86) is obvious. If p(x, 0)
=b and the constant b is large enough, we obtain from (1) and (19), (20) the estimate
|0, = c(x3+(0,9)*— 1)=c,>0. Hence (86) is verified. Finally, integrating by parts as

usual in the integral (29), we get (84), (85).
Theorem 5 follows from (84), (85) and the usual Tauberian arguments.
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