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ON CURVES WITH A CONSTANT PERIMETER
OF THE DESCRIBED POLYGON LINES

STANISLAW GOZDZ

A class of plane locally convex curves is considered. The conditions for constancy of the peri-
meter of some polygon lines described on curves belonging to the considered class are proved. For
this purpose some properties of a periodic function are given.

Preliminaries. Let r(f) be a periodic continuous and positive function with the
period 2r. R. L. Tennison [4] has examined the curve represented by the well-
known formula

0

0—( }r(t) constdf, [ r(t)sintde).

Y] 0

He has proved that the closed curve has a constant width whenever the even Fou-
rier coefficients for 7(f) vanish. The case when the Fourier coefficients with indices
n-l vanish for every integer [, where n is a fixed integer has been considered in [2].
In the present paper we generalize the results in [4] and [2]. We consider a condition
of constancy for the following function

FOHADSN ++--+£ (90 0(5) . )

Here f is a continuous periodic function with a period L and ¢ is a function such that
10 @(s+L)=o(s)+L

m-limes

3" k(e(s) 9'() = kls),
and k(s)>0 is a fixed continuous function defined for the whole real line R such that

(A) Kk(s)>0, for all s¢R,
(B) A(s+L)=k(s), for all sER,

L
(C) [ k(s)ds=2nj, where j=1 is an integer.
]

Using the above function f, we will define a family MM consisting of locally con-
vex curves of a class C' (formula (18)). Next, conditions for constancy of the peri-
meter of some polygon lines described on curves belonging to M are proved. The
results are applied to star-shaped polygons which are described on simple convex and
closed curves belonging to M.

Let us denote by L3(0, L)(k) a real Hilbert space with k(s) weight. For (s)=1
the space defined above is a usual Hilbert space L%0, 2r j). Let us consider the fol-
lowing function
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On curves with a constant perimeter of the described polygon lines 67

6f/e(t) dt, for s=0

(1) K(s)= o
— [k(t)dt, for s<0.

We shall need the following statement, formulated in [1]. “The set of all functions

) p i cog A K(a) esin X Kis), - w1, 2,0
V2 %9 J VR J
is an orthonormal and complete system in X0, L) (k)"
From (3] the equation
; k
3) ()= Fot

has a solution given by the formula ¢(s)=K~'(K(s)+a), where a=0 and K—' is the
inverse function for K. Now the function K is defined by (1) for the whole real line R.
Therefore we can define the family of solutions of equation (3) by setting

“) 9a () =A"" (K(s)+aj),

where s¢ R and the index a¢ R
Solutions (4) have the following properties

) Pa (@3(5)) = Qa5 (5).
(6) Qa(s+L)=0u(s)+L.
We shall prove (6). By (4), we have
K(@u (s + L)) = K(s + L)+ aj= K(s) + 20j + 0j= K(9u($)) + 21]

for s=0

Oq(s)+L 0u(5) 0u(s)+L
=K. (s))+ [ k(t)dt=af k(t)dt+ [ k(t)dt

04(5) @ul(s)

0u(s)+L

= [ Odt=Kou(s)+L).

Hence we obtain ¢u(s+L)=¢.(s)+L.

Remark 1. Generally it is not possible to replace the function f belonging to
L3¢0, Ly(k) by the function @.(s). We overcome this difficulty by defining some uni-
tary group o — 7,. For this purpose let us denote by .# the set of all functions be-
longing to L¥0, L)(k) which are the restrictions of all continuous functions with a
Period L to the interval (0, L). Obviously .# is a dense linear subspace of %0, L) (k).
At first let us define a semigroup

0 Ta: vl
®) (Taf)(8)=f(9a (5)), for fec..
Since hy (6)

(Taf)(s+L)=f (9 (s+ L) =f (9a () +L)=f (9a (5)) = (Ta f) (5),

the restriction of function 7.f belongs to .#. Now we verify that 7, is an isometry
or each a¢R.

| Tuf I8 = [ PR ds= [ (00 () bs)ds
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L 0q(0)+L
= Uf 12(9a (5)) k(0a (5)) @, (5) ds= m{) ) f2(t) k(t) dt
- [ PO RO at= 112

Therefore we can extend each operation 7, to the whole space L%0,L)(k). Let us
denote this extension by 7. Obviously by (5) the function a— 7, is a semigroup, i.e.

) TaTs=Tasp
(10) T,=1, where (If)(s)=f(s).

1. Fourier series. Let f¢Z%0,L)(k) and let the Fourier series for the function f
be given by the formula

(1) F()=3 Aot I Aycos " K()+Bysin 7 K(s)

Lemma 1. If f¢LX0, LYk). then the Fourier series for the function Tuf is
given by

(12) (Taf)(s)= —]5— A+ E;l ([4, cos (na)+ B, sin (na)] cos "T K(s) -
+[— A, sin (na)+ B, cos (na)] sin _;; K(s)).

Proof. We shall compute the Fourier coefficients @, and b, for the function 7.f,
where f belongs to .. Then (7. f)(s)=f(¢a(s)) and

an:\/_lf fo(%(s)) k(s) cos *;-vK(S) ds
nj 0

= L [0 () k(s)cos - (K(ou(s)—) ds

=L [0 () h0u (5) 0, (5) cos - (Klgu ()~ ) ds

<

0q(0)+L i
= L JOr)cos S (KO—w)at
j 0q(0) J

n 1 L + 3 1t i
= p J’ f(£) k() cos F K(t) dt] cos (mz)+[ﬁ—j 6[ f(t) k(t) sin i K(t) dt] sin (no)

= A, cos na+ B, sin na.
Similarly, we obtain

Sl r 4o L py .
b= & 6'. [ (9a(8)) k(s) sin 7 K(s)ds= — A,sin no+ B, cos na.

Since the set .# is dense in L%0, L)(k), it follows that the formula (12) holds for the
whole space L0, L)(k). Q.E.D.
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ALet us denote by m an integer greater than I and let B=i—"- Let us consider the
function

(13) Fi(s)=(U+Ts+ T+ 4+ Tim—18] ) (5).

Theorem 1. For each function f belonging to L¥*0, L)k) the Fourier series
for the function F; is expressed by the formula

(14) Fy(8)="2Ag+m 52 (Aqcos 5 K($)+Bysin - K(s)),
min

Where m|n denotes that n is divided by m.
Proof. From (12) we have

(T f)(s)= ,.%_ A+ E;‘ ([A, cos (niB) + B, sin (niP)] cos —;’ K(s)

+[— A, sin(nlB)+ B, cos nif] sin _;L K(s)),
for =1, 2,..., m—1. Hence we can compute the Fourier coefficients for the function
Fr(s)= —; Co +n§1 (c, cos i'r K(s)+d,sin —;—f- K(s))
as follows
e ":z: : A, cos (nlB)+ B, sin (nlp)
and B

m—1
d,= IEO [— A, sin(nlB)+ B, cos (niB)].
If m|n, then it is easy to see that
m—1
Cpe l}:o [Ancos2rlr+ B, sin2r ri)=mA,

and similarly d,=mB,, where n=m-r and nlf=2nrl, (=0, 1,...,m—1. lf m|n (n is
not divided by m), then ¢,=d,=0. Obviously c¢,=mA, Hence equation (14) holds.
Corollary 1. The function F; defined by (13) is constant everywhere if and
only if the Fourier coefficients for the function f satisfy the following condition if
m|n, then A,=B,=0.
Remark 2. If fis a L-periodic and continuous function, then (7 f)(s)= f(¢u(s))
Moreover,

(15) Fr()=f(8)+f (@) + - +f (9™ (s))

Where ¢(s)=gp(s) and ¢'(S)=@(@.-- 9(s)...)) and, ¢°(s)=s.
Obviously, by (5) F,(¢(S))=F/(.;)fmlsn particular, if £(s)==1, then

(16) Fr&)=f )+ f(s+2 )+ +f s+ 2 (m—1)),

Where L=2n).
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2. Applications to geometry of plane curves. We will denote by & the set of
all periodic continuous positive functions with the period L>0. Let us define the plane
curve s— 7y(s)=2z(s) by the formula

ff(t) k(t)eik0 dt, for s=0
an A)=1 °
— [f(O)k(t) ek dt, for s<O0,

where f¢.2, (formula (16) [1]). Let C denote the set of all continuous functions k(s)
satisfying conditions (A4), (B), (C). We consider the following class

(18) %=kL(JCM (»),
where
(19) M(k)={rs: fe 2}

Obviously the curves belonging to 9 are of a class C. If f—-ﬂ%

is of a class C2. Moreover, if j=1 and the condition of closeness

-, then the curve 7,

L L
(20) [cos K(t)dt = [sinK(t)dt=0
0 0
Fig. 1. A simple convex and Fig. 2. A locally convex and closed
closed curve rr€M curve 7, ¢ M

1 7>0 19 £>0
20 A=B;=0 20 Ay=B,=0
3 j=1 3% j>1 (in this case j=4)

is satisfied, then the curve r, is an oval, ([5] p. 198). So the set of all ovals is con-
tained in 9¥. Various types of curves belonging to the class ¥ are illustrated in fi-
gures 1, 2 and 3. In paper [2] the notion of the equiangular n-polygon has been de-
fined. Now we introduce the m-polygon line described on a curve 7,¢ .

Definition 1. Let m be an integer and let 2j<m. The polygon line (with m
vertices) tangent to ry at the points

2(s), 2(@(5)). - . - » 2(9™1(5), 2(0™(s))
will be called m-polygon line described on r,.
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We have ¢™(s)=s+L. Therefore if the curve r, is closed, then 2(¢™(s))=2(s).
Then the m-polygon line is closed. If 7, is a simple closed and convex curve, then
the m-polygon line described on r, is equiangular m-polygon in the sense of Defini-
tion 1[2]. Let us point out that the angle between the tangents at the points z(g(s)),
('t (s)), {=0, 1,...,m—1,is equal to Bj.

Fig. 3. A locally convex non-closed curve s

10 . £>0
20 AIT#O or 811!:0
3% j>1 (in this case j=3)

w=[Vrj. Ay, Vrj.B)=2(s+L)—z(s)

Theorem 2. Let 2j<m and let r;¢W. Then the m-polygon line described on
the curve ry has a constant perimeter if and only if the function F; defined by (15)
is a constant function.

In order to prove this theorem we calculate the sum of the length of the vectors
2(s)A and Az(@q(s)) (see Fig. 4.). ;

Lemma 2. Let O<aj<n. The sum L(s, 9u(s)) of the length of the wvectors
2(s)A and Az(94(s)) is equal to

@g(s)

L(s, \oa(s))="‘:" I f(® k) cos(K(t)——K(s)—-%—u)dt.

cos - aj 5

Proof. It is easy to prove that the unit vector tangent at the point 2(s) to
the curve r, is equal to eX(). Hence (see Fig. 4.)

L(S 9u(8)=]2()A | +]| A2(0u(s)) | =E—n,

where
2(5) +& eK6) = 2(q (5)) 41 €K(@als)
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and |w/| denotes the length of w.
But K(9u (s))=K(s)+aj and

\ 0q(s)

v=2(9(s)—2(s)= [ ft)k(t)e’X dt.

5

Thus, we get

[€K6), p]+[eiK®) | giKtoq(sN] -0,

z(w(s))
where [z, w] —Imz-w.

Hence
‘ > ®q(s)
| \ : N —mg | O ROsIn(KO—K(s)dt
2(s) 3 /A and similarly
0als)
Fig. 4 S=—a | SO RO sin (KO~ K(s)—aj)dt.
Finally
Oqls)
Ls ou(s) = [ [k cos (K(O)—K(S) =5 aj)at.
Cos 5~ aj
Q.E.D.

Proof of theorem 2. Let the m-polygon line described on the curve r,
be given. From Lemma 2 the perimeter P(s) of the m-polygon line is equal to

PUs)=L (5, G(S)+L(S 0+ +L (@7 () 07 (s))
) m—1 v+l

7 I [ Sk cos (K()—K(e° ()~ 5 ) dt.
cosm— v=0 g¥(s)

Since ¢7(s)st=9"t!(s), v=1, 2,...,m—1, setting £=¢? (&), we have

P(s) =

T T f (0 ) k) cos (K= K(s)—x - )t
cosm 0=0 ols

Ny vv?‘F,(t)b(t)cos(K(t)—K(S)—ﬂ—,’;T)dt-

os=® *’;"

If the function F, is constant, i. e. F,(s)=c, then

P(s)= " c.hit)cos (K~ K(s)—n L)t
COSN”;" e

=2c-tgn L.

Conversely, if we assume that the perimeter P(s) is constant, then P’(s)==0.
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But

P/(s)cos & -1 = —k(s) ”if’ Fy(#) k(0) sin (K(6)— K(s)—n - )
and
(21) (,ﬁ P/(s)) cosn L = 2F,(s) k(s) sinx - — P(s) k(s) cos 1 -L--
Hence

Fy(s) =y ctg(x 1) P(s)

and in consequence F,(s) is constant.
Q.E.D.

In the case when r,¢98 is a simple convex and closed curve, the m-polygon line-
described on 7, is the equiangular m-polygon. Therefore we have the following corollary
which is strictly related to Theorem 4 [2].

Corollary 2. The perimeter of the equiangular m-polygon described on a
simple convex and closed curve ry is constant if and only if the function F; defined
by (15) is constant.

Now, we are going to examine the perimeter of the star-shaped polygons descri-
bed on a simple convex and closed curve r,¢ Q.

Definition 2. Let the equiangular m-polygon described on a simple convex
and closed curve ry be given. Lengthening the sides of the equiangular m-polygon
we obtain the equiangular m-star-shaped polygon described on ry.

Theorem 3. Let a simple convex and closed curve r;¢ L8 be given. Then the
equiangular m-star-shaped polygons described on the curve r;, have the same peri-
meter if and only if the function F; given by (15) is constant.

Proof. Using the formula from Lemma 2, we can express the perimeter Q(s) of
the m-star-shaped polygon described on the curve r, as the following sums

Q(s)=L.(s, 9%(5)) +L(0%(s), *(s)+--- +L (9*(s), 9¥+!(s))
+L(@(s)+ L, 9¥S)+L)+ - +L (9¥—2(s)+ L, s+2L), if m=2l+1

and
Q) =L (s, 0%()+L(0%s), 9*(8)+ - +L(0¥72(8) 9% (s))

+L(0(s) 0%(8)+L(9%(s) 9%(8))+ - +L(9¥3(s), ¥ (s)),
if m=2.. Hence, for m=2l, we have
=3 °?0+2(“

Q(s) cos 2n —"lT = }:O 2f £ (£) k() cos (K(t)— K(9%* (s))—2n TL_ ydt
. 9(s)
-1 ¢?t(s) :
+E [ SOk cos (K(O)—K(g*H! ()—2n - )dt.
o= 020 '(s)

Changing the variables in the above integrals, we obtain

o°(s) -1

Qs)cos2n gy = | T S0 () e)cos (K (O—K (6)—2 5y )t

5

+ 7S S0 ) M) cos (KU~ Kis)—2n ).
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Since
Q) cos2n = T Fy(t) k(t) cos (K (6)—K (s)—2x Ly dt,

similarly as in the proof of Theorem 2 it follows that the perimeter Q(s) is constant
if and only if the function F, is constant.

Now we observe that if f= ,le—. then

1 1
Fr) = - me

Moreover, the curve ri isin the arc length parametrization and the curvature of the

k
curve is equal to k. This implies the following
Theorem 4. Let an oval ry be given. Then all equiangular m-star-shaped

k
polygons described on the oval have the same perimeter if and only if the sum of
the radii curvatures

1 1 1
@ T ERem T i) T

where C>0 is constant.

Theorem 5. The m-star, shaped polygons described on a simple convex and
closed curve ry ¢ W have the same perimeter if and only if the m-polygons described
on this curve have the same perimeter.

Proof. Let a curve 7, be represented by equation (17). By Theorem 3 and Co-
rollary 2 the m-star-shaped polygons and the m-polygons described on this curve
have the same perimeter if and only if F, is a_constant function. 59

Let f¢ # satisfy the condition (22). There exists a subset {m,} of the set of posi-
tive integers such that, if m,|n, then A,—=B,=0. Then by Corollary 1 and Theorem 2
we have the following:

Corollary 3. For each fixed v the m,polygon lines described on r, have the
same perimeter.

Similarly by Corollary 1 and Theorem 5 it follows

Corollary 4. Let r/¢ I8 be a simple convex and closed curve such that f
satisfies condition (22). Then for each fixed v the equiangular m,-polygons descri-
bed on r; and the equiangular m,-star-shaped volygons, described on r,, have the
same perimeter.
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