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MAPPING THEOREMS FOR Z,-ACTIONS WITH FIXED POINTS
SIMEON T. STEFANOV

Some theorems of the Borsuk-—Ulam type for arbitrary Z,-actions are obtained (p is prime). The
case of free Z,-actions has been studied by many authors. We ' give a generalization of some of their
results for n- sphues Furthemore, we get mapping theorems for Z,-actions in n-balls.

The various generalizations of the Borsuk—Ulam theorem usually concern fixed
point free periodic transformations of a prime period p, i. e. free Z,-actions. However,
when p>2 many spaces do not admit a free Z -action (for example the even dimen-
sional spheres). it is natural to see what happens in this case. In the present paper we
deal with arbitrary periodic transformations of a prime period acting in some compact
space X. We define some homological invariant of X in terms of its equivariant ho-
mologies and we apply it so as to obtain a coincidence point result for spheres
(theorem 2). This theorem is a partial generalization of the corresponding results of
A Schwarz [14, H. Munkholm [6] and A.Necochea [7] for free Z, actions.
Finally, we get a mapping theorem for Z,-actions in balls (theorem 3) which in the
case of involutions is proved by the author [10)].

The homological invariant, we shall construct, is the so-called “index” introduced
by P. Smith [9] for free Z,-actions in homology spheres (p—prime), further defined
and investigated by C. Yang [11] for fixed point free involutions in arbitrary spaces.
Here we shall give definition of the “index” for arbitrary Z,-actions in some compact
topological space.

1. The index. Let X" be a compact Hausdorff space and 7: X'— X be a periodic
map of a prime period p. A subset F of X is called invariant, if 7TF=F We
denote by X, the fixed points set of 7, X,={x¢ X Tx=x}. Since p is prime, each
orbit x={x, Tx,..., 777'x} consists either of 1 or of p points.

In order to defme the index of X with respect to 7 we make use of Cech homo-
logies, therefore we shall assume first X being a simplicial complex and 7:X—X a
simplicial transformation of a prime period p such that for any simplex o the points of
o) To are fixed points of 7. The last condition is always satisfied for the barycentric
subdivision of a periodic simplicial transformation (see G. Bredon [3]). Then the
set X, is a subcomplex of X.

Recall now the definition of the equivariant homology groups of X. Consider the
operators =147+ ...+ 7771 t=1—T, acting in the group C,(X) of the n-chains
with coefficients in Z,. As usual, by p we mean one of 5 and t, then p means the

other one. Evidently pp=0. The chains, which vanish under p are called p-chains.
We denote

CoX; T)={x € C,(X)| px=0}.

Furthermore, p — cycles, p boundaries and equivariant p-homology groups are
defined as follows:
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Zo(X; T)={z€Cy(X; T) 0z=0}
BX; T)=0C, (X; T)
Ho(X 5 T)=2Z0(X; T)/BYX; T).

The relation between p and p-homologies is illustrated by the following elementary
proposition (P. Smith [9]).

Proposition 1. % is a p-chain if and only if x= pc-+ %y, where the chain
»r consists of all simplexes of » lying in X (taken with the corresponding coeffi-
cients). Provided that » is a p-cycle, u, is also a cycle.

Assume first, that X7+ (). For n=r we shall define by recurrence the index ho-

momorphisms v, ,: Z)(X; 1)-H,(XT) of the n-dimensional p-cycles group into the
reduced (ordinary) r-homology group of X.

1) n=r. Let 2 be an r-dimensional p-cycle. Then by proposmonl z=pc + 2,
Put v, (2)={z;}, where {27} is the class of the cycle z; in H(XT)

2) n>r. Let z= pc—}—z, be an n-dimensional p-cycle. Then pdc=0, that means dc
is a ;Edcycle of dimensional n—1, hence the element v, , (dc) is defined. Set v, (2)=
Vn—l.r C)‘

Theorem 1. v,, is a homomorphism such that v,,B(X; T)=0, consequently
it induces a homomorphism

Vot (X T)—H(X7).

Proof. We shall proceed by induction on ~. B

1. n=r. Clearly, v, . is a homomorphism, since for any two p-cycles z=pc + 27,
2'=pc’+2z, we have z+2' =p(c+c')+2,+2,. We shall verify, that v, . BYX; T) =
If 2¢BYX; T), then 2=0x for some (r+1)-dimensional p-chain %. By Proposi-
tion 1 x=pc+xp, then z==0x = pdc+0x,, whence v, (2)={d%;}=0.

2) n>r. We have to prove first, that the definition of v, is correct, i. e. it does
not depend on the particular choice of the chain c. Let z=pc+2; and z=pc’+2;,
then p(c—c¢’)=0, so that ¢—c¢’ isa p-chain. By the induction hypothesis, we have

V,—,,0(c—c")=0, hence v, _, dc=v,_, 0c.

Let us show now, that v, B" (X T)=0. Let 2¢ BY(X; T), i. e. z=0x for some
(n+1)-dimensional p-chain %. Then »= pc+ur and z-=0% = pdc + Ox;, whereby v,,(2)
=V,_p,(00c)=v, _, (0)=0. The theorem is proved.

To avoid dmblgunty in the definition of the index homomorphism v, ,: HX; T)
—H/X;) we shall assume that

i 6 if n—r=0 (mod?2)
P=1t if n—r=1 (mod?2).

Definition of the index. Let X be a simplicial complex and 7 be a simplicial
map in X of a prime period p with X< (. Then in(X; T) is the greatest n such
that the homomorphism v, , is nontrivial for some r.

Suppose now X;= (). Then in the same way we may define in(X; 7)—it is
enough only to modify 1) from the definition of v,,, as follows:

1) n=0. Let z be a O-dimensional p-cycle. Then 2z=pc and we put vy(2)
=1(c)€Z, where /(c) is the index of the O-chain ¢ modulo p (if ¢=Za.0, then
[(c)= Za,(mod p)). Clearly,v,(z) does not depend on the choice of ¢ since if z=pc=pc’, then
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p(c—c")=0, therefore /(c —c’)=0. In this case we find index homomorphisms v,: H?
(X; T)~Z
Assume as before

(& if n=0 (mod2)
P"1t it n=1 (mod?2)
and define in(X; 7)=max{n v, 0}

When p=2, we obtam exactly Yang's index [11].

Consider now an arbitrary compact space X together with a periodic transforma-
tion 77: X— X of a prime period p. The index of X (with respect to 7) is defined in
terms of its equivariant homology groups. The group FH?(X; T) is by definition the
inverse limit

HY(X; T)y=lim HYNy; T),

where ® is an open covering of X invariant under 7" and A, is itsnerve (see G.Bre-
don [3] for details). Then the index homomorphisms v, :HYX ; T)— H(X;) are

obtained as limits of the corresponding index homomorphisms of N, The index
in(X; T) is now defined in the same way:

in(X; T)=max{n v,, -0 for some r}.

Evidently, in(X; 7)=dim X; since the inequality dim X<k implies /#;_ (X5 T)=0.

The index is an important invariant, which is convenient for obtaining by induc-
tion various coincidence point results.

Definition. A closed invariant subset Fof X is said to be a strong partition
in X if it separates the points x and Tx for any x ¢ X\ F. Since p is prime, it is
clear, that F separates each pair T"x T’x, where i+j (modp). FEwvidently, F is a

strong partition in X iff X\ F= U T‘U where U is an open set such that TU

NTWU=@ for i-j (mod p). Each strong partition contains X;.

Proposition 2. Let F be a strong partition in X. Then there exists a homo.
morphism vy : H(X; T)—*H" (F5 T), such that v, ,w()=v,AC) for any { ¢ H(X;T).

Proof. For p=2 this theorem is proved by Yang. Following his idea, we shall
briefly sketch the proof and refer the reader to [11] for defails. Analagous property
has also the Fadell—Rabinowitz index [5].

Take an arbitrary { ¢ H%(X; T). Let no: HO(No; T) — HY(X; T) be the canonical
projection, where ® is some “small” invariant covering of X so that mo(lw) =5 for

some (., € /%(N,,: T). Since F is a strong partition in. X, X\ F —U TiU, where T'U

NT/U =@ for i j(modp). We may assume, that every element ofk o nonintersecting
F is contained in exactly one of the sets 7°U, 0<i=p—1.Set o' ={Veo | StV N F+=Q}.
Then the complex N, is a strong partition in N,. The p-cycle , admits the repre-

sentation C, = peo+ Cr, where de,, is p-homologous to a cycle z, lying in N,-. De-
fine Vo(Go) = Zar C_Iearly, V,,_,(Cm)= Vn—-l.r(d“"!):Vn—].r(zl')) = Va1, Vellw). We have

L(FT) :-lim HP  (No': T), thus v, converges to a homomorphism y: H%X; T)
’Ho I(F T)

Proposntlond If in(X; T)=n and F is a strong partition in X, then
in(F; TY-n—1.
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This follows immediately from proposition 2.
Proposition 4. in(S*; T)=n for any periodic map T :S" — §" of a prime

period p.
Proof. As following by the famous theorem of P. Smith [9] the fixed points
set of 7 S7 is a homology r-sphere for some — 1=r=n. Consider first the case

r=0, which means, that S74@. Let 2" be an r-cycle in S% nonhomologous to zero
in A1(S%). Then by definition v, (2")={2"}-0. Suppose now, that for some s<<n we
have found an s-dimensional p-cycle z° with v, (2¥)=+0. But 2°~0 in s", i e
25=0x+! and we set 2°*!=px**tl. This is a p-cycle, since 0z°+!'=pox'*'=p2*=0 and
therefore v,+1,,(z’+‘)=vxﬂ',(px‘“):v,,,(dx"“):vs_,(z’):'FO. Finally, we get some n-
dimensional p-cycle 2" with v, (27)==0, which implies in(S"; 7)--n. The inverse fol-
lows from in(8"; 7)=dimS"=n.

Whenever 7= —1, i. e. S2=(®, we have to start from an arbitrary O-dimensio-
nal p-cycle 2° with vy(29)==0.

In the case of a free Z,-action, the index is closely associated with the so-cal-
led “genus” introduced by A. Schwartz [14], the “B-index” of C. Yang [12] and
the “co-index” of Conner and P. Floyd [4] (the last two concepts are introduced for
p=2). This connection is illustrated by the following.

Proposition 5. Let T:X~X be a fixed point free periodic map of a prime
n

period and in (X; T)=n. Then for any decomposition X=U®; of X into n closed
t=1

invariant subsets, some ®; contains an invariant continuum K.

To prove it, one has to carry out induction on n and to make use of Proposition
3. When X=S" it is proved by M. Krasnosel'skii [13].

We may conclude from Proposition 5, that in (X; 7)<<ec whenever T is fixed

point free. Really, one can find a decomposition X'= [J ®; of X into closed invariant
t

=1
subsets, none of which contains an invariant continuum (recall, that X is compact)

When 7 has fixed points this is not always true — for example, if H,(Xp)=={0} for
infintely many values of r.

2, Mapping theorems for spheres.

Theorem 2. Let T:X—X be a periodic map of a prime period p and in
(v; T)=n. Given a map f:X—R* consider the set

A(f)={x€ X|fix)=f (Tx)=...=f(T*"'x)}. Then in (A(f); 7)=n—k(p—1) and
consequently dim A(f)=n—k(p—1).

Proof. Suppose first k=1. Let f:X—R'. Put F,—={x¢X|[f maps s points of
orbit x into a single one}. Clearly A(f)=F,cFpac ... cFRcF =X and each F, is
a strong partition in F,_;. Then by Proposition 3 in (A(f); T) =n—(p—1). Let now

k

f: X—-Rt and f=(fy...f,). Then in (A(f): T)=n—(p—1) Obviously A(f) =,Q|A(f’)

and by the same Proposition 3 we get in (A(f); T) ~n—k(p- 1).

Corollary 1. Let T:8"—S8" be an arbitrary periodic map of a prime period
p. Then for any map f:S8"-R* we have dim A(f)=n-—k(p—1), where A(f)
={X€S"|forbit «=const}.

This follows immediately from theorem 2 and Proposition 4. In the case of a fixed
point free 7' it is proved by many authors — C. Yang [11] for p=2, A.Schwartz
[14), H. Munkholm [6], A. Necochea [7] (last two for maps into a A-manifold).
Munkholm showed, that this estimate cannot be strengthened in general.
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Corollary 2. Let T:8"—S" and 9: R*¥—R* be periodic maps of a prime period
p and ¢:S"R* be an equivariant map (¢T =0¢). Then dim ¢ (R)=n—k(p—1).
(indeed A(9)=¢ ! (R%)).

Corollary 3. Let T:S8"~S" be a periodic map prime period p. Given a map
f:S"R* consider the set B(f)- {x¢S"|f(x)=f(Tx)}. Then dim B(f)=n—(k—1)
{p—1)~ L

Proof. Let f=(f),...fg) Set

A (f)={x€S"|f;| opir,=const for 1<i<k—1}

A ) ={x€S" | fe(x)=fe (T}

We have by Theorem 2 in (Az_1 (f); T)=n—(k—1)(p—1). Evidently, A, (f) is a
strong partition in S”, thus in Az (f) also, whereby in (Ae—1 (f)NAx(f); T)=n—(k
—1)(p—1)—1 (Proposition 3). The required inequality follows from the inclusion B(f)
Ak ()N A f). Probably, this result may be reinforced, since the points of
Ar 1 (f)N Ag(f) satisfy additional conditions.

It is easy to see, that for free Z,-actions, the index cannot decrease under
equivariant maps. Naturally, for actions with fixed points this is not true. Nevertheless,
the following statement is valid:

Proposition 6. Let ¢: X—V be an equivariant map (¢T,=T.9) such that the
homomorphism (p_*:H,(XTl)-»H,(YTZ) is @ monomorphism jor every r. Then in (X; T,)
~in (Y, Ta).

Proof. Let in (X; 7,)=n, so that v, , ()0 for some ¢¢ /5 (X;7,). Then
Vo, r 04 ()30 as following from the commutative diagramm

Ho (X5 Ty) — H(Xr,)

@) Jo.

Ho (Vi Ty) = FLY7)

Hence in (}; 75)=n. i

3. Mapping theorems for balls. When X is a ball B" we have X+ and H/(X7)
- {0} for each r (a theorem of Smith [8]). Thus in (X;T)==0. In order to obtain a
mapping theorem for balls, we ought to consider the index of a pair (X, Y) defined
below, which is the natural homological invariant in this case. For p=2 this index is
introduced and studied by the author [10].

Let Y be a closed invariant subset of X. The index homomorphisms W, , are the
compositions

Va—1,r

Moo HO(X, Y3 T) = Ho_ (V3 T) == H (V).

The index of the pair (X, V) is defined by
in (X,Y; T)=max {n|p,,+0 for some r}.
If Y;=O, consider p,=v,10,. F0(X,Y;T)—Z,

Obviously, in (X, Y;7)= in(¥Y;T)+ 1. The index of a pair has analogous proper-
ties to the index of a single space.
~ Proposition 7. Let in (X,Y; T)=n and F be a strong partition in X. Then
in (XNF, YNF; T)=n—1. Moreover, there exists a homomorphism y:HS(X,Y;T)
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~H P (XTI F Y\ F; T) such that the diagramm is commutative.
For p=2 it is proved in [10] and the proof for arbitrary p is analogous to that of
Proposition 2.

Ge
HOX Y, T) e H?_ (Y, 1) )
—

¥

H’H',)

-1,0
‘.’¢ | w Tl o~
_ 2o B v /
H (XOFEYOFT) ——m H* (YNF:T) .
s -2r

v
"

Proposition 8 in (X, V:; 7)< dim X.

Proposition 9. in (B", §='; T)=n for any periodic map T :B"—~B" of a prime
period.

Proof. For k>0 we have Hy(B"; T)={0} (see Bredon [3]). Then by the exact

sequence
Ho (B T) —~ He (B S 1) H (Says T)—~Ho_(B"; T)

we conclude, that o0, is an isomophism. But s ,=va. 1, 0, and v,_; ,-=0 for some r
(Proposition 4), hence p,, ,-=0 which means in (B", 8" ';T) -n.

Theorem 3. Let in (X, Y; T)=n, where T:X ~Xis a periodic map of a prime

period p. Given a map f:X—R* consider the set A(f)={x¢X f(x)=f(Tx)=...
-f(T?-'x)}. Then dim A(f)—=n—k(p—1).

The proof is identical with that of theorem 2, we must only refer to Prop. 7
instead of Prop. 3.

Remark. Corollaries 1,2 and 3 remain valid if we replace S" by B". The following
two propositions are proved for p=2 in [10]. Their proof for arbitrary p may be
obtained by the same reasoning with some insignificant modifications.

Proposition 10. Let in (X, YV :7T) n, Y= and C be an invariant partition
in X between X, and Y. Then in (C:T) -n— 1.

In the case p=2, (X, Y)-(B"S" ") it is proved by D. Bourgin [2].

Proposition 1l. Let in (X,Y;7T)=n Y;=@ and C be a closed invariant
subsets of X nonintersecting X; and Y. Let us have ker i,—ker v, for some k=n—1,

A1

where Hy (X .C3T)“—Hp (Vi T)-*.Z, Then if C= | ®, is the union of
i-=1

n—-k 1 closed invariant sets, some ®, contains an invariant continuum.

For (X, Y) =(B", 8" "), antipodal Z,-action and k-0 the condition simply means,
that C separates B" between O and S™ ! and we get a classical theorem due to K.
Jorsuk [1).
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