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EXISTENCE OF SOLUTIONS OF FIRST ORDER PARTIAL ¢
DIFFERENTIAL-FUNCTIONAL EQUATIONS VIA THE METHOD OF LINES

D. JARUSZEWSKA-WALCZAK AND Z. KAMONT

In this paper we prove a theorem on the existence of a solution for a non-linear first order par-
tial differential-functional equation with Cauchy data. The proof of existence is constructive and it is
based on the method of lines. By using a discretization in the spatial variable, the original problem is
replaced by a sequence of initial problems for ordinary differential-functional equations. We investigate
the question of under what conditions the solutions of ordinary differential-functional equations tend to
a solution of the original problem when the step size tends to zero.

1. Introduction. Denote by C(X, Y) the class of continuous mappings from X
into Y where X and Y are metric $paces. Suppose that 1,¢R,, R.=[0, + o) and
T=(Ty .., T, €R". We define D=[-21, 0]}{—1, 1], E=[0, a}>R" where a>0 and
E,=[—1, O]XR" If 2: E,1) E->R'is a function of variables'(x, )=(%, y,,..., y,) and
there exist derivatives Dy, 2, i=1,..., n, then we write Dy2=(D, %, ..., Dy 2). For
the above 2 and (x, y) ¢ £ we denote by 2,y: D—R the function given by z,,y(t S)=2(x+t,
V+3), (¢ $)=(t, sy, ..., S)ED. Let Q= E><C(D R)XR". Suppose that f: Q—R and
9: E,—R are given functlons We consider the differential-functional problem

1 D2(x, y)=fx, ¥, 2ey Dy2(x;, Y)
(1) 2Ax, V)=0(x, v) for (x, ¥)€E,.

In this note we prove a theorem on the existence of solutions of (1).. The proof is
constructive and it is based on the method of lmes We consider also approximate
solutions of (1).

The method of lines for partial differential or differential-functional equations con-
sists in replacing derivatives with respect to spatial variables by difference operators.

_Then the initial (or initial-boundary) value problem is replaced by a sequence of initial
problems for ordinary differential or differential-functional equations. The method of
lines can be considered as a method of approximate solving of partial differential
equations. The main problem in these investigations is to find such a differential-diffe-
rence approximation which satisfies some consistency conditions with respect to an
original problem and it is stable. The method of lines can be considered as a tool for
proving existence theorems for initial or initial-boundary value problems for partial
differential equations.

Both of the above aspects of the method of lines will be considered in the paper.
We prove an existence of theorem for (1) and we give an estimation of the existence
domain of a solution. We prove also an error estimate implying the convergence of
the method,

The method of lines for first order hyperbolic systems in two independent variab-
les is considered in [8]. The author gives in [8] a convergence theorem and an exist-
ence theorem based on the method of lines for the Cauchy problem with respect to
non-linear hyperbolic systems. Difference methods for first order partial differential-
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Existence of solutions of . .. via the method of lines 105

functional equations have been considered in [4], [6], [10], [20], (see also [l], [11]).
Existence and uniqueness of solutions of initial problems for first order partial diffe-
rential-functional equations have been studied in [2], [9], [11]. Differential-functional
problems considered in [2], [11] have the following property. The right hand sides of
systems are superpositions of a function F=(F,,..., F,) defined on a set in R* with
some operators V=(V,, ..., V,) of the Volterra type. In our paper we omit this
assumption. The papers [12], [13] contain sufficient conditions for the existence and
uniqueness of solutions of generalized Cauchy problem for differential-functional sys-
tems of the Fredholm type.

Differential equations with a retarded argument and integro-differential problems
can be obtained from (1) by specializing the function f. It is easy to see that the
problems considered in [2], [11] can be formulated in the form ().

For further references concerning the method of lines see the monograph by
Walter [19] and the papers [17], [18].

If 2¢C(E,UE, R), X€|— 1o a), then we define | z ||, =sup{|2(4 s): £¢[—1 X,
VER}. For weC(D, R) we write || @ |co. ry=max { | w(t, s) : (£ s)eD}. We will denote
a function n of the variable ¢ for £€[—1,, a] by n(:) or (N(f) <. I NEC([—7,, a], R)
and f¢(—1, a], then D_n(¢) (D n(f)) is the left hand lower (upper) Dini derivative of
n at the point £ If X and Y are Banach spaces, then CL(X, Y) denotes the set of all
linear continuous operators defined on X and taking values in Y. If X=C(D, R),
Y=R, then | -|/o is the norm in CL(C(D, R), R). We shall use vector inequalities,
with the understanding that the same inequalities hold between their corresponding
components.

2. Assumptions. Our basic assumptions are the following:

Assumption H, Suppose that

1° the function f: Q<R of the variables (x, y, w, q) is continuous and bounded
on Q and there exist derivatives Dyf=(D, f,..., Dy f).Def=(Dq f. . ...Dy, f);

2° for each (x, v, w, q)¢Q there exists a Frechet derivative D, f(x, v, @, q)
€CL(C(D, R), R);

3° the derivatives D, f, Do f, Df are continuous on Q and there exists At R.
such that

Dy fix, v, w, q) <A, Dyf(x, v, w, @) le=4
Dy px, v, w @) =A i=1...,n (xy w qEQ:
4° there exists ‘L\O such that we have
Dy fx, v, @, =Dy fix v, w, PISLly—y i+ w-w leo.mt =g ]
D, f(x, v, w, §)—Dy f(x, ¥, w, ¢)|lc<L[ ly—yil + | w—wco.r) +/1g—q| ]
Dy fix. y. w, q)—Dq f(%, ¥, w, Q<Ll|y—y|+|w—w|corn+q—q ]

where i—1,...,n,and Y| =y, |+ - +|y.s
5° for (x, y, w, q)€Q we have

Dg f(x, y, w, q)=0 for i=1,..., k,
D, f(x, vy, w, 9)=0 for i=k,+1,..., n,
Where | <ky<sn and there exists b=(b,,..., b,). b,>0 for i=1,..., n, such that

SO vu o Yin Y260 Vg oo Y @ @Q=flx, ¥, @, q), i=1,...,n (x, ¥, @ Q)
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Assumption Hy Suppose that _
1° @¢C(Eo, R), Dyo(x, y):(D,ltp(x, Y., Dy o(x, y)) exists for (x, y)¢ E, and

WXy Yirooor Vic Yit2b, Vigrs oo Y)=0(x, ¥), i=1,..., n, on Eg;
2° D,o¢C(E, R") and we have on Q

|Dy“P(xv VI =A, i=1,...,n,

| Dy o(x, ) =Dy 0 (x.y)| =Ll y—yl, i=1....n

where A,=0, L,>0.

3. Discretization of the problem (1) and a comparison lemma. For y=(y,, ..., ¥,),
V=1 -2 Yo ¥, YER", we define yxy=(3,y,-..,¥,¥,). We introduce a mesh in
R" in 1the following way. Suppose that for a z=(k,, ..., h,,sl there exists N=(V,, ..., V,)
such that A, are natural numbers and N=h=»5. Denote by /, the set of all 2~ having
the above property. Let /={m=(m,,..., m,): m; be integers, i=1,...,n}. For h¢/, de-
fine Y =), .., yu Yy =msh, meJ. Let Ela]={(x, y): x¢€[0, al, meJ}, E,lh)
={(x, Y"™): x€[—7, O], meJ} and Blh|=Ey[h]U E[k]. For a function z: B[h]~R we
write 2"(x)=2z(x, y). Denote by# (B[k], R) the class of all functions z: B[h]~R
such that 2(-, y™)¢ C([—1, a], R) for meJ. If z: Blh|—~R, then we write | 2(x, )|,
=sup{|z(x, y)|: meJ}. Let S={r=(r,..., r)): rie{0, 1}, i=1,..., n}. Suppose
that z: B[h]»R and y€R". Then there exists m¢J/ such that y"™=y=y"+D where
m+1=(m+1,..., m,+1). We define for x¢[—7;, a]

(m) (m)
. - y—=y - . .
@) (1A y) = T 2O () sy,
rées
where -
m,
(m) n V=V,
Y=YV N RN
( ",, )"121( hi ) ’
3)
" y’._yi('"‘-)

~ )lf—r‘.‘ _V(””"S VZ;_V("' + l;’

_y(m)
(1 —y":'_)b f= :‘El (1 — h,
and we take 0°=1 in (3). Thus we have T,2: £,1) £ +R. 1If z¢F (B[], R), then
Tw2eCE,UE, R) ([4). If 1<i=n, m¢J then we write i(m)= (my ..., m_y, m,+1,
Mgty - or my) and —i(m)=(my, ..., m,_y, m—1, myy, ..., m,). We define difference
operators (A, ..., A,) in the following way. If z: Blh| =R, h€l, m¢J, then

A 2™ (x) = hl [Utm)(x)—2m(x)), i=1,..., &,
(4) ) |
AZ(x) =5 [2"(x) =2 1x)), =Ryt 1, .. 0,

and Az("(x)=(A;20"(x),. .., Az")(x))
We consider the following differential-functional problem

sz(m)(x) f(xt y("')» (7,,.2) y("l)' AZ("')(X)), ”I(.I,
2(x, ym)=g(x, y™) for (x, y™)¢€ Eylh).

Denote by u, a solution of the line method (5) on [—1, a] and write U,=T,u, We
give sufficient conditions for the following requirements to be satisfied: (i) there exists
u= lim U, (ii) u is a solution of (1).

h—=0

)
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In the sequel we will use the following lemma.
Lemma 1 ([4]). Suppose that

1° 2¢C(E,UE, R) and z, is the restriction of z to the set Blh]; B

2° the derivatives (Dy 2(x,-)...., Dy 2x, N =Dyz(x,) exist on R" and Dyz(x,")
€C(R", R") for x¢[—1, a]; .

3% there exists Co¢ R, such that D, z(x, ¥) =C, for (x,y)e¢E,UE i=1,....n

Then | Thzp— 2|, =Coll |, x€[—1, a].

Let Sy ={r=(ry..., rp): ri€{—=1,0,1} i=1,..., n} and S;=S\{0©} where
O=(0,..., 0)¢ R". We will denote by A =(A,,..., A,) the difference operator given by
(6) Azm(x)= ) I c02min(x), i=1,...,n,

i res,
where ¢ ¢R, z: Blh]—~R and 5{,’"‘(x)=(51z"")(x).. .., Az™(x)). Now we prove a
comparison lemma which enables us to estimate a function satisfying differential-diffe-
rence incqualities by the maximum solution of an initial value problem for ordinary
differential-functional system. It will be a modification of Theorem 5 from [3].

Assumption H, Suppose that

1° the function g=(g.,---. &) [0, A]XREXC([—1o a]. RE—R" of the variables
(5 &My E=CEp.oey v n=("y, ..., Ny is non-decreasing with respect to the
functional argument and satisfies the following Volterra condition : if n, n€ C([—1y
al, R%), (x, &)€(0. a] <R and n(t)=n(t) for t&[—7o x|, then g(x, & m)= g(x, & n);
2% g possesses the following quasi-monotone property : for each i, 1 <i=k, g;
is non-decreasing in &; j=1,..., kR, j*=i;

3° g is continuous and for each n,€C([—1, 0], R%) there exists on [—1,, a]
the right hand maximum solution of the problem
() W'(x)=g(x, n(x) 1) nx)=ne(x) for x€[—7 0];

Ly =gy Uay) i ElR) X F (B[R], RO—R". j=1,..., k, and

vi(x, v, 2)=0 fori=1,..., ky, j=1,..., &,

v,i(x, vy, 2)=0 for i=ky+1,.... n j=1,..., &,
where (x, y, 2)€ E[h]X Z (B[h], R*);
5° the operator (A, .... A,) given by (6) satisfies the conditions :

-0 for i=1,..., ky TE€S,,
=0 for i=ko+1,...,n, resS;,

L och=0, i=1,..., n

res,
We will denote by (;) the inner product in R™ If 2=(z,,..., 2,): B[h]—~R* then
we write || 2(x, ) [l = (] 23(x, ) [l - . -] 24l ) 1n) and (| 22, <) [ Wh—coa) = ((| 24(8 ) ).

o (L 2a(8 ) [a)-sea)-
Lemma 2. Suppose that

- 1° Assumption Hy holds and u=(u,, ..., w,): Blh]—=R* where u,¢F (B[h], R),

t=1,..., k;

2° for meJ, x¢| —1, a| and for i=1,..., n we have u(x, y\™,..., y")

(m4-2N )
Vi Sy yim)y=u(x, ym);
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3°  the initial inequality |u(x, -)|p=No(x) x€[—1,, O] where n,¢ C([—1, O], R%)
and the differential-difference inequalities

®) D u() —(uAx, Y, 1)s Bu() | gix, (X, ) i

(!*ll(f. ) ‘/x)[ ——t,.a})y x((O,a], In(./, j: 1,..., &k,
hold.
Under these assumptions we have

(9) Lu(x, ) [ p=o(x, no), x€[0, al,

where (-, no) is the maximum solutign of (7).
Proof. Let w(x)=(w,(x),..., @yx))=lu(x,") . xX€[—1x al. We prove that

(10) D_w(x)=g(x, w(x), w) for x¢(0, al.

Suppose that x ¢ (0, a] and 1= j=£k are fixed. Then there is m ¢/ such that 'c_o,(x)=iuy")(x) |-
We consider two possibilities: (i) wj(x) = u{™(x) or (ii) za?,-(x):—u;’")(x). If (i) holds
then

(11) Du(x)=g/(x, || u(x, ) n (Lalt, ) a)—r0a))

CE vy, @) [T e ulr )+ u )] S gi(x, @), @)
=1 i r(S(',

Since D_ lufx,-) a=D"u{"(x), then we have by (11)
D_w/(x)=g(x, w(x) @)

In a similar way we obtain the above inequality if the possibility (ii) holds. Then we
have (10). Since @(x)=ny(x) for x¢[—7, 0] and weC([—To al, R*) it follows from
(10) and from the theory of differential-functional inequalities ([5], [7], [14]—[16]) that
(9) holds.

4. The convergence of the lines method. At first we prove that solutions of (5)
are equibounded. .

Lemma 3. If Assumptions H,, H, are satisfied, then (i) for each he¢l, there
exists a solution u, of (5) on [—1,, a), (i) there exist C, Co€ R, such that for
x€[0, a] we have

- c Ax c 1 ~
(12) uy(x, ')‘\h&—,(co‘*'";)e — A it A>0,
| up(x, ) |n=Co+Cx if A=0.

Proof. We see at once that u, exists on [—T,, a) for hely Let C and C, be
such constants that |f(x, v, 0, 8)|<C for (x, ¥)€[0, a] X [—b, b] and |o(x, ¥)|=C,
for (x, ¥)€[—To 0] X[—b, b].

An easy computation shows that

1
(13) | Daim(x) — <0|' Dy f(Q(x, m, t)dt; Au(x) > A (Tatn)yom o, m+C,

x€[0, al, meJ,
where Q(x, m, t)=(x, Y™, (T yltp), m)» tAu(™(x)). It is easily seen that
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sy — i) _ y(m) ) 7
(14) ,{E ( Y ’i' )’(l_— Yy ;:’ )l—f_:-_l for y(m)gyéy(””_l).
It follows from (2) that

- _ym) _ylm)
(Tumolts )= T _af'™ (e + (=Y 1 ===
r¢ 3

where y(m <y s<yn+) m¢ /. We conclude from (14) that
(15) [ (T ttn) oy e, = max {l| an(x+1t,-) a0 L€ [_"‘o’ ol}-
Since [|u,(x,-)|l,=C, for x¢[—1, 0], then we obtain*(12)" from (.-13), (15) and by

applying Lemma 2. : )
Let us denote by ¢,=(gus-- -+ gnn): Blr}—R" the function given by

gx) = - W) — () for i<l Ko

9(x) = [0~ x| for i=ko+ 1. m,

h,i

where x¢[—1,. a], meJ, hel,.
Lemma 4. /f Assumptions H,, H, are satisfied, then

(16) 1 g, ) h=e™ A+ D=1, x€[0, a}y i=1,..., n.
Proof. We first prove that

1
17 | Dagiyfx)—( [ Do f(Pi(x, m, )t g

c=A+Amax{|| g, dx+t )| t€[—Tw 0)}y meJ, i=1,..., n, x¢[0, a,
where P, (x, m, )= (x, Y, (Thity),ime A4 (x) +¢ (Ao (x) — ()], for i=1

..., Ry and
Pit, m, )= ¥, (Tt e A O(x)

+t[Au(x)—Aul M) (x)])  for i=ky+1,..., n.

For a fixed i, 1=i<k,, we have

(18)  Dgix) =51 f(x, Y, (Tyitp), yicmm M) =FCxs 3™, (Toltn),yimn»

A= [ Dy f(QUk . 00t -+ [ DolQuxs my D) (T i) timy—(Tin) yomllt

n

+ 21 6; D,,jf(P,(x, m, t))dt Agim(x), x¢€[0, al,

where Q,(x, m, t)=(x, Y +thie, (Tytn),yom + (T altn), yim) — (Thttn) gy AUGEN(x))
and ¢,=(0,..., 0, 1, 0,..., 0)¢R", 1 standing on the i-th place. Suppose that (¢, s)€D,

m¢J. Then there exists m=(my, ..., m,)€J such that ym < ym +s<y™+d 1t follows
from (2) that ‘ :
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LT+ £, 99 ) (Tt 4,y +5)]

_y(m g m)
= T lu@en (x +8) — a7 (x+ ) (E— (1 =)
7€ i

where y =y +s. From (14) we conclude that

1 ;
(19) 'h'."'(Th”h)xy(i("'))"‘(Thuh),y(m) co.m=max{ | g;(x+t-) 4: te[—1t, O], x€0, a
The above estimation and (18) imply (17) for 1=i=k, In a similar way we prove (17)

for ky+ 1 €i=<n. Now we obtain (16) from Lemma 2.
Let us denote by ¢,=[t,;jlij=1.....ns tay: Blh]—R, the function given by

thif(x, Y= 1/h -Ifi"‘”"’(X)—qi,"?(x)ly Jj=1 ... ke
thidx y)=1/h; (g () — g, 7™ X)) J=ket+1,. ... n,
where i=1,..., n, x¢[—1, a], me¢J. We define

(20)

A=cra(Ay+1), C=A+—r -
Mx)=[LCX(C+nLy)+ Lo) [1— Lnx (C+nLy)] ™%,
ay,=min(a, e[Ln(C+nly))~", O0<e<l.
Lemma 5. If Assumptions H,, H, are satisfied, then
21) ty (6 ) s Ax), x€[0, agf, & j=1,..., n

Proof. Suppose that | =i<k, 1=<j=k, and Q(x, m, t) = (x, (L —¢) ytm) + gytitmn,
(1= EXT ttn)yomy + U T utty) yiims (1 — YA (x) + A (), P(x, my 1) = Q(x f(m), ),

Then we have for x¢[0, aol meJ

(22) D t"'”(x)-— — I [D, f(P(x, m, t))— D, f(Q(x, m, t))]dt

h,ij
T h f D, f(P(x, m, £))[(T ), y(/('(’")))'—(Thuh)(y(/(m))] dt
- hT [ D, f(Q(x: m, t)) [(Thuh)xy(i('"))_(Th”h)xy(”')]dt
+ i h <6" D,,f(P(x, m, t))dt; Au(/(t(mn)(x) Au(/(’"))(x))
— < f D, fiQ(x, m, t))dt; Aufitm) (x)—Aufm(x))-
h‘ hj (
It follows from Assumption A, and from (19) that

(23) - 1Dy f(Px, m, ) =Dy (Qx, m. ) LI+ max ]| gy fx-+2) i €[~ 0]

+ T [ tpuf(x ) lla) X€[0, ao], meJ, telo, 1.



Existence of solutions of ... via the method of lines 111

It is seen at once that the same estimations for
4| Do, f(PC, i, £)=Dy, F(Qxs m 1)

%waf(P(-\', m, £)—Dg f(Qx, m, £)) 1. x€[0, ap], meJ, te[0, 1],

are true. Let
(29) Upir=( Thu/t)xy(/'(i(m)‘) - (Thllh).ry(f("’))—( T,,ll,,)_‘_y([(m)) + (Thu")"’y‘m)'

We next prove that

< l 1 -

(25) ;h‘hj Uh.,jlc([), R)<max{ th,i/ (x+t, ) ne t(’[—Tm 01}9 3([0: ao]'

Suppose that (t, s)¢D, m¢J. Then there exists m=(m,, ..., m,)., m¢J, such that
yom < ym 4 s y(m+Nand we have

1 e - i
Wi Uit s)= Z(s ﬁ[uh(/(z(vn))fr)(x + t)——u;{""”” (x+1¢)— u;:(m)+r)(x+ t)
i r i

- — y(m) — y(m)
+uf (x+ O X Y1 =25y,

where y=y™+s. Now we obtain the estimation (25) from (14). Combining (19)
(22)—(25) we obtain

h.ij

(26) Dty ()~ ([ Dy f(PCe,m, )t Aoy < LI+ max { gy ox-+,-) 5 £ €[~ 70,0

+ [El il ) A1 + max {|| g,dx+2, ) {2 t€[ —10 O]}

n

B It (0) [+ Amaxi] G dx+8 ) [ln: £€[—T0 O} x€[0, ao]. meJ.

Note that we have actually proved the differential-difference inequality (26) for
l<i<k, 1<j<k, The same proof of the estimation (26) remains valid for the rest
of 4, j, 1=i, j<n, the only difference being in the definition of P(x, m, f). Therefore
we omit the details.

tead The estimates (26) and the inequality @ ¢, ,4(x,)|,=Lo & j=1,..., n, x¢[—1, 0]
ead to

| th,i7 (2 ) 1n ;;ij(x)v x€[0, aol, i, j=1,..., n,

where u=[u;)ij—1,...,n is a solution of
ﬂ£,(x)=L[A+l§l Ny ()] [ A+ ol M(X)]+ Amax {n(x+1): t€[—7, 0]} & fJ=1,...,n,

nifx)= Lo X€[—T0 O).
Since ) o
u (X)=L[C +nn (P, & j=1,..., n, x¢[0, ag],
and
M(x)=L[C+nMx)]* for x€[0, a,), M0)=L,,
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we obtain z;(x)=Mx) for x€(0, ao}, i, j=1,..., n. This completes the proof.

5. The existence theorem. Theorem 1. If Assumptions H, Hy are satisfied,
then there exists a solution u of (1) on E,UE* where E*=|[0, a,| XR".

Proof. Suppose that U,: E,UE*—R, Qy=(Qu1r---» Qua)h Qu: EoU E*—>R" are
functions given by

(27) Uh= Thuh' Qh.i: T;,(I,,_i, i=1,..., n
It follows from Lemmas 3—5 that
(28) Ui, )= (Cot-5)et—5, i A0,

U,(x, y)| = Co+Ca,, if A=0,
| Qulx, M[=A—1,
|Un(x, 9)—Uplx, W =@ 1) y—y |,
|Qui(x, ¥) — Quilx, ) =Mag) | y=y [, i=1....n
on E,U E* It is easy to see that there exists C€R, such that

| DUx. 0 =C, [|D,Quxs =T, (x, Y)EEUE*

From (27), (28) and from the above estimation it follows that there exists a sequence
{p®), h®¢],, and functions u€ C(E, ) E* R), v=(vy, ..., v,) C(E,UE* R") such that
lim | #® ||=0 and

k—oo

u(x, )= lelg U, w(x, Y

o, )= lim Q,0(x, ¥)

uniformly with respect to (x, ¥)€¢E, U E*. Now we prove that Dyu=(Dyu, ..., Dy u)
exists on £* and Dyu(x, y)=1(x, y) for (x, y) € £*. Let hely 1 =i=kyand ym=(—k+1)b,
where % is a natural number. Then we have

Uh(xv Vi Vi yt'mi)' Vit oo y,,):U,,(x, Voo Vi _~kbi' Vivtvr oo o yn)
m—1

+ Z~ hiQuiXs Yooy Viers YO, Yigree s Yok

j=—kN;
(X, Yprevos Vit Yivrr -+ YD €[0s ag) X R,
and consequently

w(x, Y)=u(x, Yp+-+» Yi-vr —Fbiy Yigrre s Vo)

Yy
+ i 'v[(xv yp ooy yi—-lv t) y[+10 LU ] yn)dt’ (x' },)E E*'

— kb;

Therefore we have .
(29) Dy u(x, y)=v{x, ¥), (% Y)EEY,
for 1<ix=k, In a similar way we prove (29) for ko+1<i<n. It follows from (5) that

(30) uy(x, y™)=o(0, y™)+ ff(t- Y, (T yldn) yomp gult, ym)dt, meJ, x¢ (0, a,).
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It follows from Lemma 1 that
31 lim 7 ,u,(x, y)=u(x, y)
=0 )

uniformly with respect to (x, v)€E, ! E* For each y¢R" there exists a sequence of
grid points which is convergent to y. We conclude from (29)—(31) that

u(x, v)=¢(0, v)+ (_)fx f(t, v, wy, Dyu(t, y))dt, (x, y)EE*.

Thus we see that uz is a solution of (1). This completes the proof.

Remark 1. If Assumptions A, and H, are satisfied, then the solution « of (1) is
unique (see [5]).

6. Error estimation of the method of lines. In this part of the paper we consi-
der the initial problem (1) and we assume that there exists a solution of (1). We
investigate the queston of under what conditions the solutions of the problem (5)
tend to a solution of the original problem when the step size tends to zero.

Assumption H, Suppose that

1° fe C(Q, R), the derivatives (D,,1 A anf)=qu exist on Q and Dy f ¢ C(QR");

2° the condition 5° of Assumption H, holds and there exists A¢R, such that
fix, 0w, @)—f(x, 3 @, q)|<A| 0~ |co, ry on @

3° the function ¢ satisfies the condition 1° of Assumption Hy,

4° there exists a solution u of (1) which is of class C' on E and u(x, ¥y, ..., Yi—y
Vi+2b; Vivys oo, v)=u(x, v) on E for i=1,..., n.

Suppose that Assumption A, holds. Write

Me=sup{| fx, Yy, w, my A (x))—f(x, Y, @, my, Dyt™(x))|: x€[0,a], = N=m=N}
C=sup{| Dy u(x, y)|: (x, ¥)€[0, a]X[—0b, ], i=1,..., n), =1 s

Theorem 2. If Assumption H, is satisfied, then for each h¢l, there exists a
solution v, of (5) on [—1,, a] and

(32) la(x, )=, ) L= (Cll 2]+ A1) e —1) if A>0,
Jun(x, ) —v(x, ) [p=mpx it A=0,
where x¢[0, a). In particular we have

lim ||u,(x, - )—v,(x, ) |,=0 uniformly with respect to x¢|0, aj.
h—0

Proof. We see at once that v, exists on [—1, a]. It follows from Assumption
H, and from Lemma 1 that

| D a{(x)— D 0™ (x)—< g'l D, A(Q(x, m, t)dt; Aul(x)— AT (X)) |

<A[max { || u(x+t, ) —v(x+1t ) p: L[ =T O}+Cll & |]+n, x€[0, a], meJ,

where Q(x, m, t)=(x, Y™, u, (m, AV x) - t{Auy(x) —Av{(x)]). Now we obtain (32
from Lemma 2.

Remark 2. The results obtained in this paper can be extended to weakly coupled
systems of differential-functional equations.
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