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THE NIELSEN NUMBER WITH RESPECT TO A SUBSET ON MANIFOLDS
ANDRZEJ LECKI

In this paper we will investigate 9}( f, B)— the Nielsen number with respect to a subset. It is

a homotopy invariant which gives a lower bound of the number of points in f~1(B) where f: X = Y
is continuous and B Y. We will assume that X, ¥, B are closed oriented and smooth manifolds, B
is a submanifold of ¥ and dim X = dim Y — dim B.

1. Introduction. The Nielsen number with respect to a subset was defined by
R Dobrenko and Z. Kucharski in [1]. It is defined for continuous maps f: X—Y
where X is compact, locally path connected and B Y is such that there is an open
neighbourhood W< Y of B which can be deformed to B in Y. First, let us quote
some of the definitions given in [I].

We say that the points x,, x; € f(B) are in the Nielsen relation with respect
to B iff there exists a path ©: 0— X such that ©(0) = x, ©(1) = x, and the path
fow: 0 Y is homotopic rel {0,1} to some path n: 0— Y such that n(0)< B. This
is an equivalence relation in f'(B). The classes of this relation, (which are called
Nielsen classes) are open in the compact set f '(B), so there can be only finite number
of them. We say that a given Nielsen class of f is essential if it cannot be deformed
to the empty set during any continuous deformation of f. The number of essential
Nielsen classes is called the Nielsen number with respect to B and is denoted by
N(f, B). Thus the number 9(f, B) is a homotopy invariant and gives a lower bound
of i f~1(B) (we denote by = § the cardinality of the set S). In the quoted paper [1]
the following theorem is proved:

Theorem 1.1 If

(a) X,Y are oriented smooth and closed manifolds,

(b) B is an oriented smooth and closed submanifold of Y,

(c) dim X = dim Y —dim B = 3,
then the Nielsen number N f, B) is the best homotopy invariant which is a lower
bound of i f-(B).

In order words for any continuous map f: X — V there is a map g: y — ¥ homo-
topic to f such that i g~'(B) = (g B) = N(f, B).

In the present paper we investigate the case when dim X = dim Y —dimB = 2.
In this case the theory is analogous to the fixed point theory of surface maps (see [2]
[4] [5]). As in the fixed point theory, there exists a map which cannot be homotopi-
cally deformed to a map such that the cardinality of an inverse image of a given
set coincides with the Nielsen number. One of the simplest examples of such a map
Is given in the Appendix.

The main purpose of this paper is to prove theorem (2.6). It generalizes theorem
(L.1) to the case dim X = dim ¥ —dim B =k = 2 under the additional assumption
ab}?ut }che position of B in Y. This additional assumption is automatically satisfied
when 2 3

In our paper we will need one more construction from [1]. This is the local index
I(f, B, U) of the continuous map f with respect to B and to an open set U< X
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(the set U should satisfy oU 1 f7(B) = (). When f is trans 1t b i-
fold B, the index is defined by the formula: J VEISA 50 e submatt

I(f,B, U) = z I(f, B, x) where

xEfBnU
[f. B, x) = Sg“'f/(.\-)B [df T XD TrnY)

The index is useful when computing 9(f, B). Because if the index of a Nielsen
class (i. e. index of f with respect to a neighbourhood U of A" such that 4" — U f~1(B)
= U N f~(B)) is not equal to 0, then the class is essential. If # =3 or £ = 2 and
the inclusion j: Y\B—Y is locally trivial (see definition 2.4), then a Nielsen class
is essential iff its index is not equal to 0.

1 %1 Tt:ie Mlnitm(ljzationf ll)drobéem. In what follows we assume that X, Y are smooth

closed and oriented manifolds, B is a smooth closed an i , i

losed A O B =2 and dim B — n. d oriented submanifold of Y,

In order to formulate the main result we need a number of definitions.

For each point 6¢B < Y there is an open neighbourhood V < Y such that there
exists a homeomorphism ¢: V — R"XR? satisfying o(V 1 B) = R"<{0}. The family of
all these open neighbourhoods of b we denote by ¥7,. For V¢¥7, the homomorphisms
induced by inclusions VN\B— Y\B, j,: YN\ B—Y we denote by i,, .: IT,(V\ B, ¥)
—TL(YNB, Y), Jo 2t (Y \B, y) = TL(Y, y) where y is an arbitrary ‘point in VN\B.

Definition 2.1, An inclusion j: Y\ B-—Y is said to be locally trivial at the
point b¢ B provided there is V €V, such that kerj, .. < im i, ..

Proposition 22 If b€ B, then the following statements are equivalent :

(a) The inclusion j: Y\B—Y is locally trivial at the point b.

(b) Each V¢V, satisfies imi,, . = Ker J,, 4.

(c) For every continuous map v: (D2 S'\{xo}, {xo}) (¥, Y'\B, {b}) there exists a
map i (D2 DIN{xoh {xo}) -~ (Y, Y\B, {b}) such that v} =V' (x, is an arbi-
trary point in S').

(d) For every path a: 0 Y being homotopic rel {0, 1} tothe consta -
and such that a'(B) = {0, 1}, there exists a h{omo;opy H:0 xoﬁtypgef}}:,‘ce},(t)jomg
rel {0, 1} the paths 0 and o and satisfies H-'(B) = {0, 1}<0 1] 0>{0}.

The proof is straight forward and we omit it. ] )

Remark 2.3. If the inclusion j: Y\ B — Y is locally trivial at the point b¢ B,
then it is locally trivial at every point in the same connected component of B.

Proof. It is sufficient to show that the set of points at which the inclusion is
locally trivial is open and closed. Openness follows immediately from Definition (2.1).
In fact, if the inclusion is locally trivial at b¢ B, then there is V¢¥7, such that
ker j,, «+ © im iy, & But for every point b" ¢V (B the set V belongs to ¥~ Thus by
(2.1) the inclusion is trivial at every point &’ ¢ V ] B. Analogously the statement (2.2
b) gives us openness of the set of points at which the inclusion is not locally trivial.
This completes the proof. []

Definition 24. The inclusion j: Y\ B — Y is said to be locally trivial if it is
locally trivial at every point b¢B.

The main result will follow from

" Lemma 2.5. Let the inclusion j: Y B —Y be locally trivial, f: X - Y be a
continuous map such that f~(B) is finite and let the points xg X € f~\(B) belong

to the same Nielsen class. Then there is a continuous map f: X —Y homotopic to f

which satisfies

FUB{xo X1} if I(f, B, xo) + I(f, B, x,) = 0.

B = |
FUB)N{x0} otherwise.
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Proof. Since x, and x, are in the Nielsen relation with respect to B, then by
the definition there are paths w: x,~~x;, nm: f(x,)~~ f(x,) such that fow and n are
homotopic rel {0, 1} and n(0) = B. Without loss of generality we can assume that o
is an arc (by (3.2) in the homotopy class of  there is an arc) such that o (0)) f~Y(B)
= {x4 X} (because the set f~!(B) is finite).

The map f will be constructed in several steps.

Step 1. (The translation of f(x,) along the path w).

We consider a pullback of the tangent bundle of B:

n
nHTB) ~ 0 % Rl 7B
‘ p
1 n 1
0 -~ B

Having 1 we define v: 0XR"— B by (¢, v) = exp (n(¢, v)). Now let 7= Y be an open
tubular neighbourhood of the submanifold B and {: 7 —+ B be a normal bundle of B
in Y. Then we take a pullback of { induced by vy

a
YHT) =~ 0 X R X R2 oo -1

| ¢

!
0% R" L B

Thus we obtain a map o: 0XR”XR2 — 7 such that
(—) For every £¢0 the map o, = o(f, -, - ): R"XR2 -V is a local diffeomorphism
at 0

(—) «aft, 0, 0) = n().
(=) o7(B) = 0XR" {0}
Since f(x,) = n(0) = a4(0) and «, is a local diffeomorphism at 0, there is an open
neighbourhood U < X of x, such that locally there exists the inverse map ao—l‘:f(l—/)

H?"“}"’. Moreover, since the set f~!(B) is finite we can choose U such that Uﬂf—‘(B)
s xO .
Let us define the map A: R*+>—R by putting

Mx) = 3

0 if || x|l=¢
e— |||l

if [[x]|=e¢
3 | X |

where & = min {||a;'of(x)|[: xedU}> 0.
Then the homotopy G: X0 — Y given by

Gix, 1) = f(x) it x¢U
a(t*Loagtof(x), ailof(x)) if xeU

joins f with the map g = G(o, 1) satisfying: g—'(B) = f~}(B) and the path gow is ho-
motopic to the constant path 0(f) = g(x,) = &(x;).

: Step 2. (Joining x, with x, in the inverse image of B). The aim of this step
is to construct a map #: X — ¥ which is homotopic to g and satisfies 2—(B) = f~(B)
U a0), how(t)= how(0)¢B for all £€0. It can be done by ((blowing)) the arc ®
into the constant path 0(f) = g(x,). More precisely, let {/ < X be a neighbourhood of
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the arc © such that U N g~ '(B) = {x,. x,} and there exists a homeomorphism ¢: D? — U
satisfying ¢(¢, 0) = (»l~+—l) for all £¢[— 1, 1]. Let //: 0<0-—Y be a homotopy rel

{0, 1} joining paths 6(¢) = g(x,), gow and such that H-Y(B) = {0, 1} <0 U 0<{0} (the
inclusion j: Y\ B — Y is locally trivial, so by (2.2d) such a homotopy exnsts) Then
the map #: X— VY is given by

( &(x) if x¢int U = ¢ (int D?)
h(x)={ gool[t, (plt,s) — 1)s] if x =0t s)€int U and £ + 452 = 1
Hit + 1/2, p(¢, s)] if x=o¢@ s)eint U and 2 + 45?2 = 1,

where p: int D2— [0, 2], p(¢ s) = %l‘ .
\

Step 3. (Reduction of (0) from h~(B) to a point or to the empty set).

Since £¢(0) is a point and ®(0) is an open subset of £ '(B), then there exist neigh-
borhoods:

(—) W< X of the arc w: x,~~ x,, which is homeomorphic to D%

(—) V= Y of the point #c®(0), which is homeomorphic to R”xR?2, such that
AW )= Handint (W) (| A~Y(B) = W [} h—(B) = ® (0). Then the restriction #j»: W-—V
can be considered as a map (&,, hy): W — R”>R2 Now, note that A,: W R?, h51(0)
=h Y (B)N W=w0) and W is homeomorphic to D2 Thus according to the degree
theory we can deform the map 4, (not changing its value on the border) into a map
for which the inverse image of O is:

(—) @ i deg(hy, W) = I(f, B, xo) + I(f, B, x;) = 0

(—) {x,} otherwise.

Thus it is possible to reduce o (0) from £ }(B) to a point or to the empty set. Finally
we get the required map f as a map homotopic to 4 ~ f.

[.et us prove the main theorem:

Theorem 26. If X,Y are smooth oriented and closed manifolds, B is a
smooth oriented and closed submanifold of Y, dim X = dimY —dimB = 2 and the
inclusion Y\ B Y is locally trivial, then for every continuous map f: X — Y there
is a map q: X— Y homotopic to f such that (g, B) = W(f, B) = = g~ \(B).

Proof. Without loss of generality we can assumne that f is smooth and trans-
versal to the submanifold B. Thus f'(B) is finite. Then according to lemma (2.5) we
can remove every Nielsen class of index zero and every essential class (of index = 0)
can be reduced to a single point. This procedure shows that we can obtain a map
with Ji(f, B) points in the inverse image of B, what completes the proof.

3. Appendix.

Proposition 3.1. If f:S2 +S? is a map of degree 2 and B = {y, y,, ys}.
then © f~\(B) = 4> 3=2(f. B).

Proof. First, because $* is simply connected there are only three Nielsen classes
(fUY) i= O. 1, 2). It is clear that they are essential (the indices are equal to 2).
Hence 9i(f, B) = 3. Suppose that there is a map f: S? —~S? of degree two such that
w f~YB) = 3. Then f-Y(Y,) = {x;} for i =0, 1, 2. Now consider disjoint neighbourhoods
C,. Cy of points y,, v, which are homeomorphic to int D? and such that y,¢ C, for

i=1, 2. Let D,, D, be some neighbourhoods of the points x,, x4 which are homeo-
morphlc to int D3 and such that f(D,) < C,fori=1,2. Then S\ (C, | Cy) = f(S*™\(D, || Dy))
=8y

Ya-

Note that S*\ (C, ) C,) is a retract of S {y,, ¥,} and therefore there is no loss
of generality if we assume that f(0D,)< 0C,, f(0Dg) < dC,. Then the degree of
fi: 0D, —~0C, is 2. Now observe that S™ (D, 1 D,), S™(C, ) C,) are homeomorphic
to S' < 0. Therefore there exist coverings
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pr: R0 SN (D11Dy), py: RXO—=S\(C,1JCy)
and a lifting

(R0, Rx{0}, Rx{l}—-z———' (Rx0, Rxx{0}, Rx{1})

P P2

/

{ !
(S™\(D, ! Dy), 9D,, 0Dy) = (N (G U Gy), 9C,, 9Cy).

It is easy to_verify that F(RX0) = R>0 and ft+=15s) =7t s) +(2,0). Now_consi-
der a point y,¢R<0 such that _Pa(¥o) = ¥, and fix two points X, €67 Yo) xa€f !
X (Yo + (1,0). Then fpix) = paf (x;) =y, for i =12 As = f~Yy,) =1 we have
() = Pi(xa)- This iTplies that there~is~n£Z such that_x, = x, + (n, 0), which gives
Yo+ (1,0) = f(xy) = f(xr + (n, 0)) = f(x,) + 2n, 0) = yo + (2n, 0). Thus we get a
contradiction and the proof is completed

Proposition 32. Let X be a two dimensional manifold without boundary.

Then for every path o: 0— X with different ends there exists an arc ©: 0— X
homotopic rel {0,1} to o.

Proof. According to the general position theorem there is a path ®: 0— X ho-
motopic rel {0, 1} to @ with a finite number of seli-intersection points. Let ® be a path
with the minimal number of self-intersection points. Suppose ® is not an arc. Then de-
note by s, =min {s¢0: 3¢+, off) = ofs)} the first of self-intersection point of .
Let #£,€0 be a point such that #, s, and "('n(to) =0(s,). Now consider an open neigh-

bourhood V < X of the arc @ o, s, homeomorphic to R Fix & > 0 satisfying o((f,—3.
t, + 8)) < V and such that there is exactly one self-intersection point £, in (£, — 9, £, +9).
It is easy to see that there is an arc y joining 5(!0 — 8) with (:)'(to + 6) and such that
v(0) = V\J(O\[t0 ~3,t, + 8]). Observe that V is simply connected, so y is homoto-
pic to ® (to—s.2,+ 8- Thus the path a = o, 0, PR S ® - 51 is homotopic to .
Observe that a has less self-intersection points than ®. It contradicts the definition
of @ and the proof is completed.
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