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ON THE NASH-BARGAINING SOLUTION
IN STOCHASTIC DIFFERENTIAL GAMES

SVETOSLAV D. GAIDOV

The paper deals with two-person cooperative games in which the dynamics is described by Ito
stochastic differential equations. The Nash-bargaining solution for such games is introduced. Sufficient
conditions for verification of the strategies composing this type of a solution are found. The Pareto-
optimality of these strategies is also established.

1. Introduction. It is well-known that Pareto-optimality is one of the basic notions
in cooperative differential games. There is a lot of publications on these topics, mainly
in the deterministic case (see [8]). In stochastic differential games Pareto-optimal stra-
tegies are considered by the author in [3].

Let us mention that Pareto-optimality comes in for criticism at least in two aspects
(see [8]). First, the application of Karlin’s lemma and the reduction of the problem to
a single criterial optimization imply the ambiguity of the strategies. Second, Pareto-
optimal strategies can supply some players with values of their cost-functions even

greater than the guaranteeing (minimax) strategies can do.
These disadvantages can be overcome if we restrict, in some definite sense, the

set of Pareto-optimal strategies. One possibility is to use the Nash-bargaining solution.
The results presented here have been announced without any proof and details in

our recent paper [5].
Note that for reduction of calculations we consider games with two participant.
2. Formalization of a stochastic differential game. Consider the system (game)

C={1, 2}, X, {#,, %}, {J,, Ja)).

Here {1, 2} is the set of players participating in I. The evolution of the dynamic
system I is described by the following stochastic differential equation of Ito type.

(%) dx(t)=f(t, x(t), u,, w)dt+g(t, x(t), u,, udw(t), t¢[ty, T)
with an initial condition x(¢,) =x,€R" and 0<¢,<7. The process w={w(t), £¢[t, T}
is a standard m-dimensional Wiener process, defined on some complete probability
space (Q, #, P) and adapted to a given family F={#, t¢[f, T]} of nondecreasing
sub-c-algebras of #. The vectors x(f)¢R" is the state processand u,¢ U,~R" is the
control of the /-th player, i=1, 2.

Let us make the following assumptions about the functions f(¢ x, u,, uy) and
g(t, x, u,, u,). Suppose

£: [ty TIXRTX U, X Uy—R"
and
g: ltl)’ T]X Rn?KU]XUg"’R"XRm »

have continuous partial derivatives in x, u;, uy. Further, let C>>0 be a constant
such that '
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£(£, 0.0, 0) +  gt, 0,0, 0)|=C,
fo+ gx;_}_ful"*—‘;g”l + f”z'+‘g"2§SC'

where |- is a general symbol for the norm in the respective space.

We suppose that each player has perfect observations of the vector x(f) at each
moment f¢ (¢, 7] and constructs his strategy in the game I' as an admissible feedback
control (see [2]) of the type T :

uw;=ut, x(t)), i=1, 2
Here !

ll,»(-,~): [tur T]XR"-—'U,-

is a Borel function satisfying the following conditions:
(a) There exists a constant M, >0 such that

< uft, X) =M1+ x|) for all t¢[t,, T], xe€R™

(b) For each bounded set B=R" and T*¢(f, T) there exists a constant K;>0
such that for arbitrary x, y¢B and f¢[t,, T%

u;(t, x)—u;(t, y) =K; x—y .

Denote by #; the set of strategies of the i-th player, i=1, 2 and % =%, <,

et the pair of strategies u=(u,, u3) be called for brevity just a strategy.

The assumptions mentioned above imply the existence and sample path uniqueness
(see [2]) of the solution X={x(¢), £¢[ty, T]} of Ito equation (*) corresponding to the
control u=(u,, u,). Moreover, X is an a. s. continuous Markov process and if .o/(u)
denotes its infinitesimal operator (see [1]), then
AWYW(t, x)=f (¢, x, uy, uy)Wx (f, x)+ ; trg(t, x, uy, ug) 8 (4 X, wu,, uy) Wxx (1, x)].
Here prime denotes vector or matrix transpose and W/(f, x) is a real-valued function
With continuous partial derivatives up to second order for all £¢[f, 7], x¢R™

"~ Let us consider the continuous functions’ Q, satisfying the growth condition

1 Qdts %) =Ci(1+)x|*),

where C, k are positive constants. Introduce now the cost-function J(x) of the i-th
player of a terminal type

() =Eqy o {Qi(T, X(TY)} =1, 2

with respect to the initial sitwation x(fo)=x
" Every stochastic differential game develops in the following way. Each player, e. g.
the i-th one, chooses his strategy ¢ #; according to some principle of optimality.
Thus we have the pair of strategies & =(uy, u,). Further, the solution X of Ito equa-
tion (x) is found. Finally, X and # determine the value of J(u), i=1, 2. The object of
each player in the game I' is to minimize his cost-function,
3. Definition and properties. Let us recall the following notion of an optimal
strategy in a stochastic differential game (see [4]).
Definition. The strategy u®=(u§, us) is a guaranteeing (minimax) strategy
in the game T if '
min max Jy(#y; U4g)=max Jj,(uf, uy)=Jg
u, uy : L
and : :
min max Jy(iy, dg)=max Jy(u,, ug)=Jj

Uy u uy
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Now introduce the functional
Loy(u) =[S —Jy(u)] [J5— Jy(u)).
Definition. The strategy u"=(u}®, u3*) is called a Nash-bargaining solution
in the game T, if for each u=(u,, u,) we have
o) =1, (u™).

Note that in deterministic game theory Nash-bargaining solutions are discussed in
[7, 8]. This theory requires the consideration of J,(u) only for strategies u¢ U such
that J(u)=J, i=1, 2. Thus we come to the first property of 4", namely

J@y=k, i=1, 2.

Proposition. The Nash-bargaining solution is Pareto-optimal.
Proof. Let #” be not Pareto-optimal (see [3]). Then there exists a strategy

u = (iy, Uy) such that the system
J(w)y=J, (™), i=1, 2
holds, where at least one of these two inequalities is strict. Hence
Jo—Ju)= S, (u™)=0, i=1, 2
where at least one inequality is strict. Therefore

(=] [ J§ — Jo (@] > [J5— I(u")] [J5— Jolu™)].

L) 1,p(u™).

Obviously this relation contradicts the definition of #". Thus we get the Pareto-opti-
mality of u".

4. Sufficient conditions for the Nash-bargaining solution. First we shall consi-
der the following auxiliary proposition.

Lemma. Let X be the solution of Ito equation () with initial condition x(t,)= x,.
Then there is a positive constant A, such that the following estimate holds :

E AQUT, X(T)Q (T x(T)}—Efye (QUT, (T Ey e fQuT, X(TH} 1= A,

where Q,, Qg are the functions defining the cost-functions.

Proof. Taking into account some properties of conditional expectations, Cauchy-
Bunyakovskii-Schwarz inequality, the growth conditions of the functions Q, and a
result (see [6], Part 1, § 6, Th. 4), we get

Bty (Que (T X(T)) Qu(Ts X(T))} — Egay {Qu (T2 X(T)NEy 1, {Qu(T2 X(TI}|
S| E o, {Qu(T) X (1) Qa (T x (TN} + | Egpou {Qu (T x (TN} || Egpe, (Qu (T, X(T))} |
S 2Eq {1 QuT, X(T)) BE | QT2 X(T)) 112
S 2(E o, {CHY + [ X(T) M Eqp, (CHL + | X(T) 42}
=2C,CE;, (1] x(T) )< 4C,CE,, {1+ x(T) ¥}

=4C,, C-:(l‘*‘Ero-xo{ xX(T)"})<4C,, C[1 +K(1+ x, %)= A,,
where K is a suitably chosen constant.
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Remark Further we shall use the result of the Lemma in the form
E, e {Qu(T. (T))Q(T, X TN} —Ezpe AQu(Ts X(T)IEyx, { QT x(T)}=—A,

Now we are in position to formulate and prove sufficient conditions, satisfied by
the Nash-bargaining solution.
Theorem. The strategy u™—(ul, ut) is a Nash-bargaining solution in the

game T, if there exist real-valued functions V\(t, x) such that for all te[ty, T
X€R" and i=1, 2 the following conditions jointly hold:

(@) v, v, vo, VO are continuous;

(b) [VOxL, x) + L@V (2, )V OEx) — B+ VAL, x) + A)VA (¢, x][VO(L, x)— k]
+[Vie, x)N'glt x, uy, uy)g (¢, x, uy, ug)V(t, x)<—A

for each u=(u, ugy) where A=A /T—1);

(€) Vit x)+ @)V (2, x)=0;

(d) VO(T, x)==Q«T, x).

Proof. Let x™(t), t¢[t,, 7] be the sample path of the solution of Ito equation (%)
corresponding to the strategy 4™ —(uf’ up¥). Conditions (c), (d) and Theorem 5 (see
(6], part II, ch. 2, § 9) imply the relation

VO (g, %0)=Eqpy (Qu(Ts x™(TN}=1i (@), i=1, 2.

Now let x(f), t€[f, 7] be the sample path of the solution of Ito equation (%)
corresponding to an arbitrary strategy u=(u,, uy). Write Ito formula for VU(¢, x), x(f)
and u (see [2]):

dvo (e, x(8) = [Vt x(t)) + F@VO (2, x(t) dt
+{VO(t, X)) gt x(t), uy, ugddw(t), i=1, 2.
Then we have
d[Vie, x(t)V Ot x(@t)]={V{(E x(&)+ L@Vt x(@)VE(E, x(D)
[Vt x(6) + L@V x(O)NVOE x(0) + [V (& x(@)]'g (6 x(2), uy, ug)g'(t, x(2),
iy, u)VO (8, x(t)ydt+{g' (6 x(8), uy, w)V Y (¢, (VA (¢, x(2))
+g'(t, x(t), 4y, ug) VO, (VD (¢, x(8))} dult).
Hence by integration we get
VT, (THVE(T, X(T)— VO (¢, x()VP (¢, x(2))
= ;fr{lvi"(f, x(0)+ o @V O, x(0) VAT, x(1))+[Vx, x(7))
+ @)Wz, XDV Oz, x(0) + (VO XN g5, X0, 1y, ) (5, X(3), g, UV D, x(1)}d

R X0 1, ) VX MW X))+ ), ) Vs (O O, X(6))d ).
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Therefore
Ve, x)VONE, x)=E, VAT, X(THV(T: x(T))

- .I’r (VO x(@)+ A @V (z, VT X))+ [V (1)

+ A () VO, x(@))V (T, x(1) -+ [V(r, 2(1))&'(x, %(T), s uz)g'(r; x(t ),.uvl_ ug)VO (e, x(2))}d),
Taking into consideration condition (d) we have '

V(ty, xo) VO (b, x,) = Eg 0 {Q (T, X(T)) QQ(T. X(T)
- "T{[ VI x(0)) + @)V (¢, () Ot x(8) + [V X(0)+ A @)V (¢, x(@)V O, Lv(t'))

VOt x()) gt x(b), uy, u)g'(E, X(E), uy, u)VE (8 x(2))}dE}.
Further, Ito-Dynkin formula (see [2], Ch. 5, Th. 5. 2) gives us
T
VOt %)= Eyp o {Qu(T. X(T)) — [ [V (£, x(8) + o) VL, x(t)]dt), i=1, 2.
z

0

Thus we obtain the following chain of ehualitiés: ; L o
S (") —J§ Jo(u®)— T8 Jy(u™) = V'V (ty, XV Pty x0)— VO (to, x0)—JSVD (ty Xo)
=E, . {QuT, x(T)Qs(T, x(T)) — J5Q(T, x(T)—LQT, x(T))

&
— [ V(8 x(t)+L@)VOAE, x(£)] [VXL, x(t))—J8]+ [Vt x(8))

- A @)V AL, x(E) VL, x(8) — K]+ VO (@) g, x(0),
Ly, Ug)g (8 X(2), 1y, ug) VD (¢, x(t))}dt).
Hence
Jy(1"®) Jy(u") — J§ (") — J5 Jy( 1"y = Jy(u)Jo(u)—J§ Jo(u)—J4 j,(u)
+E,  AQUT, X(TNQAT, TN} —E, . {QUT. X(T)IEy, ., {Qa(T, X(T))}
—E, .5y { VOt x(t)+ L@V O] VOt () 5] Ve, x(t)

- @)V, KO) (VO x(0)— S5+ [VIOE X)) &t ),
u, up)g (t, (), uy, VO (L. x(t)}dt).
Now condition (b) and the Remark to the Lemma imply that
I (@) Jo(u™) — J& Ty(u™)— J& J\(u"®) = Jy(a) Jo() — J§ Jo(u)— J§ Jy(u).
Therefore for arbitrary & =(u,, u,)
(S5 Ty (")) [J8 — Jo(u"®)) = [J& — Jy()] [J§— Jo(w)].

The proof of the Theorem is completed.
Remark. The problem of existence of the Nash-bargaining solutions has been
considered in a separate paper and it will be published independently.
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