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MAPPING PROPERTIES AND COMPOSITION STRUCTURE OF CONVOLUTION
TRANSFORMS

HANS-JURGEN GLAESKE, VU KIM TUAN

The factorization of integral transforms into a product of well known investigated factors, as the
Fourier, the Laplace or the Mellin transform, is of interest not only from a theoretical point of view.
Also the possibility of the use of well tabulated transforms is important for the applications. Such
factorizations were given in [5] fora lot of ¢ransforms of the Mellin convolution type. In [11], [12] such
factorizations were used to investigate the mapping properlies of integral transforms of this type.

1. Introduction. The aim of this paper is to study such mapping properties for
transformations of the type of the Fourier convolution. Such a transform is of the
form:

(1.1) (Kf¥)= [ Rx—y) () dy.

where & is a given kernel function and f— an original from a suitable space of ordi-
nary or generalized functions.
In these considerations the Fourier transform

(12) J) = (FX) =202 [ e fly) dy

is very useful. Here the integral has to be understood in different senses: in the sense
of L,- or Ly-convergence, as Cauchy’s principal value or in the sense of the bounded
convergence, i. e.: if the integral exists and for each #,v>0 there exists a constant
C>0 such that

(1.3) L[ e f(y)dy <C.
The inversion formula (under assigned conditions) has the form
(1.4) fl)=(F= )= @02 [ e~ f( y) dy.

It will be proved that this transformation is an aufomorphism, i. e. a bijective
and bicontinuous mapping of the Wiener ring L* (section 3), an unitary transforma-
tion of Ly (section 4) and an automorphism of the space of tempered distributions S',
the Gelfand-Shilov-space of generalized functions Z' and of the space of Bessel
potentials L’ (section 5). Section 2 contains some preliminary definitions and a lem-
ma and in section 6 some examples are discussed.

2, Preliminaries. Following Akhiezer ([2), 76) we denote by L¥(R)=L* the
Wiener normed ring of all functions f which are Fourier transforms (1.2) of some func-
tions f¢ L,(R)=L, with the norm

SERDICA Bulgaricae mathematicae publicationes, Vol. 16, 1990, p. 143—150.



144 H.-J. Glaeske, Vu Kim Tuan

(2.1) [ Flize=!fil
(see also [7]). We would like to remark, that because of the “symmetry” of the for-
mulas (1.2), (1.3) sometimes one also is putting the elements f¢ L* in the form f=F~"f,
feL,

Definition 2.1. Let H be the class of all locally integrable functions
k:R—C such that the Fourier integral (1.2) of k is bounded convergent to the

limit k. Then k, h¢ H are called conjugate kernels of the subclass H*=H iff their
Fourier thansforms k, h satisfy the equation

(2:2) k, h=(2m)".
Then we have R
Lemma 2.1. Let k¢H, felL*, i. e. f=F'f, feL,. Then a. e. we have

(2.3) TR fx—y) dy= [ e~ k) () dt, x€R,
i. e.
(2.3) (K f)(x)= 2R F" k f)(x).

where the integral on the left hand side of (2.3) converges as an improper integral’
while the integral on the right hand side is absolutely convergent.
Proof. Pure formally, we have the following chain of equations:

lim [ K(y) fx—y)dy=lim (2m)~1" [ k(y) [ e fit) dtdy

Uy, v—o00 —U

~ lim @O [ et fig) [ et k(y) dydt— [ et f(£) lim (2m)=V2 [ e k() dydt

u, Vo0 -

— [ e ke) fityat.
The interchanging of the order of integration may be justified by means of the abso-

lute convergence of the double integral on the right hand side (f€¢L,!), the interchan-
ging of the integration and the limit by means of the assumption that k¢ H, such

that [ e k(y)dy is uniformly bounded.

From the bounded convergence of the Fourier integral of 2 we know that k is
bounded and therefore % f¢L,. By virtue of the Riemann-Lebesgue Lemma for the
Fourier transform in L, we have

Corollary 2.1. Let k¢ H, feL*. Then KfeL* and

(2.4) lim  (Kf)(x)=0.
X=yf-00
3. Mapping Properties of L*. Now we are going to prove some mapping pro-
perties of the convolution transform in some functional spaces.
Theorem 3.1. Let k,h be conjigate kernels, k, h€ H*, then the convolution
transform (1.1) is an automorphism of the space L*. Furthermore, we have the
inversion formula

31 f0— | hix—y) g(y)dy,



Mapping properties and composition structure of convolution transforms 145

i. e. the inversion formula has the same form as the transform (1.1) with the
kernel instead of k. .
If furthermore a. e. | 2(f) =(2rn)~"?2, then this transform is an isometrical one.
Proof. The statements of this theorem follow easily from (2.3), (2.3").
As an example we are going to consider the Hilbert transform

(3.2) g(x)=n"" _f: Y7 f(x+y) dy.

Obviously &(x)=x"' does not belong to /, but if Fk is understood in the sense of

the principal value of Cauchy at the point zero as well as at +co, then Fk is boun-

ded convergent. Dividing (3.1) into two parts (from —co to —0 and from +0 to

+ o) after a substitution of the variable in (3.1), we have the following
Corollary 3.1. The Hilbert transform

g~ lim 7 [y [foety)—f(x—y)] dy

is an isometrical automorphism of L*.

Now we consider a transform with a differentiable kernel:

Theorem 3.2. Let ¢: R—R be an odd function. Furthermore there exist ¢"
and lim ¢'(f)=+oo, | ¢"(t)| =L>0 for some interval (a, ) and ¢"/(9")* ¢ L, (a, ). Set

{—00
(3.3) h(x)=2r)~t [ exp [i(xt+o(t))] dt
and assume that h¢ H, then the integral transform

(34) ) =(HX)= [ hCx+y) f(y)dy

(where the integral has to be understood in the sense of the principal value of
Cauchy) is an isometrical automorphism of L* and the inversion formula has a sym-
metrical form.

Proof. From [10], Th. 11 and from the assumptions of Th. 3.2. it follows that
the integral (3.3) is convergent and moreover

(35) T h(x) et dx=e—iotn

If feL* heH, then from (3.5) and Lemma 2.1 it follows

(36) (HiXx)= [ h(x+y) f(y) dy=(2n)12 f e—o0) f(—f) e—i*t dt,
i. e.

(3.7 g(t)=e—°0 f(—1).

Therefore f and :g; simultaneously belong to L, or not and hence f and g also simul-
taneously belong to L* or not.
Furthermore, from

lall — | ol 3 |
l[g!‘[_-“‘lg”lzl'flll:f’ ‘![_t

we see that the transform is continuous and isometrical. Since from (3.7) (recalling
that ¢ is an odd function) we obtain
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(3.8) f(t)y=e—ot g(—1),

the inversion formula of (3.4) has a symmetrical form. Thus the theorem is proved.
Theorem 3.3. Let f,, fo€L*, f €L.. and ky, ky be a couple of conjugate ker-
nels. Then for the convolution transforms (K, f,), (Ksfs) the Parseval’s equality

(3.9) TSI Kafo) (x=3) dy= [ () =) dy

is valid.
Proof. Obviously it holds

fME’ Y f(y) dy=(2r) 12 fmfl(t) f“ e—e+) gy dt =(2/m) 1?2 fof;(t—,v) t—' sin  wut dt.

—u

Since f,€ L, (| L. the latter integral converges boundedly, i. e. f, € /1. From kyfi€L, N Ly
we conclude analogously that

_j:e"""’ ku(h) fult) dte .
Since f3, (K, f3)€L* by means of the result (2.3) we get
LA flx=y)dy = [ e fi(0) (t) dt
and by virtue of (2.2)
_f (K fX() (K fa)x—y) dt = 2n__f e~ fi(t) ky(t) fot) ky(t) dt = rf e £ () 1(8) dt.

Comparing these two formulas we have (3.9). ,
Finally we are going to consider as an application the solution of the integral
equation

(3.10) fH@r) 2 (Kf)=¢g

Theorem 3.4. Lem g¢L*, kel such that k(t)3—1, t€R. Then the integral
equation (3.10) has a unique solution f€L*. This solution is of the form
(3.11) f=g—(2n) "2 (Kg),
where K is the transformation (1.1) with the kernel

= v F i K(O)

3.12 ¥)= 12 vt RO
(3.12) k(x)=(2m) _fwe ROT1

Proof. Applying the Fourier transform to (3.10) we have by means of the
convolution theorem

f+kf=g

k ~
(3.13) =gt &
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Now from k¢ L we have k¢l* By virtue of Wiener-Levi’s theorem (see [2], 75) it
follows that k/(k+1)¢L* iff k(¢)-= —1. Applying the inverse Fourier transform to (3.13)
we arrive at (3.11), (3,12).

4. Mapping properties of L,. Now we would like to transfer the Theorem 3.2 to
the space Lo(R)=L,. The result is given by the following theorem.

Theorem 4.1. Let ¢ fulfil the conditions of Theorem 3.2 and % be defined by
(3.3). Then the integral transform

(4.1) gy=Lim. [ h(x+y) f(y)dy

is an unitary transform of L, and its inversion formula has a symmetrical form.
Furthermore we have the factorization

(4.2) g=Fe® Ff.
Remark. Since the inversion formula is symmetrical we have
(4.2 f=Fei* Fg.

Proof of Theorem 4.1. Under the conditions of the theorem the integra
(3.3) is uniformly convergent on [—u, v]. Therefore

oo

(4.3) gx)=Li.m. (2r)=1 [ eittin) {y e f(y) dydt.

From j eV f(y)dy€ L, we conclude that the integral of the right-hand side of 4.3)

conver_g"es not only as an improper integral, but in the square mean sense too and
both of the limits are identical. Therefore

gx)=Lim Lim 2r)! }” eivttio) fv e f(y) dydt

w— oo —u

=1 i m. (2m)"12 Fefe® f eV f(y)dy) (x)=F(e’°® Lim. (2r)™V2 [ e f(y)dy)(x)
(because of the continuity of the Fourier transform in L,), i.e. (4.2). By inversion we
get (4.2'):

f=F 1 e~i® F-1 g— Feio Fg,

i. e. the inversion formula has a symmetrical form. Because of the unitarity of the Fou-
rier transform in L, from (4.2) we have finally

lglla=Ile® Fflla=| Ffila=|fl2
hence (4.1) is an unitary transformation of L,.

5. Mapping Properties in Space of Generalized Functions. As usual, let O, be
the linear space of tempered C=-functions, i. e. the space of functions of C=(R),
which together with their derivatives are increasing as a power of |x| as | x|—co.
It is well known, that the elements of ©, are multipliers in the space S of rapidly
decreasing functions. Then we have

Theorem 5.1. Let ¢¢®, fulfil the conditions of Theorem 3.2. Then the trans-
formation (3.4) is an automorphism in the space S of test functions.

Proof. Since Sc L, it follows, that the transform (3.4) has the factorization (4.2).
Using the facts that the Fourier transformation gives an automorphism of S and that
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e+i® is a multiplier in S, we have the statement of the theorem. According to Theo-
rem 5.1 one can define the H-transform in S, the space of tempered distributions, by
means of the method of adjoints:

(5.1) (Hf.w)y=(f, H,w), fe¢S', veS.

Thus we have

Corollary 5.1. Let ¢ fulfil the conditions of Theorem 5.1. Then the transform
H defined by (5.1), (34) is an automorphism of S'.

Similarly we can consider the case of the Gelfand Shilov-space Z of entire func-
tions. Since Z—L, we have again the factorization (4.2). The Fourier transform of
w€ Z belongs to the Schwartz space D of finite C=-functions (see for example (4],
827 — 8.33) and therefore e is a multiplier in D. Since the Fourier transform is a
homeomorphism of Z onto D, we have

Theorem 5.2. Let ¢¢C= fulfil the conditions of Theorem 3.2. Then the trans-
formation (3.4) is an automorphism of Z. Now let Z' be the space of continuous
linear functionals on Z. Then by

(5.2) (Hf,wy=(f, Hy), f¢Z', y¢Z

one can define the transform /A on Z’ and this yields

Corollary 5.2. Let ¢ fulfil the conditions of Theorem 5.2. Then the trans-
formation H defined by (5.2), (34) is an_automorphism of Z'.

Finally let us consider the space of Besse! potentials Li(R)=L’, i.e.

(5.3) Li={feS8: (1+x?)"2 fely} r=0,
with the norm
(54) |flgg=l ety fl

see [9], V, § 3.
For this space we have
Theorem 5.3. The H-transform (5.1) is unitary in the space Lj.

Proof. First of all we would like to remark, that factorization (4.2) is valid also
for elements of S§'. So as f¢L;, we have (1+x2y2 fe Ly or e*™ (14+x?)72 feL, and
this is equivalent to g=Fe® Ff¢ L], Moreover,

gl =1 e (4 ) =1 (L2 f00) o= 1

i. e, according to (5.1) the transform /7 is unitary in L.

6. Examples. Special cases of the transforms (4.1), respectively (5.1), are the trans-
forms with kernels 2 of the following types:

(6.1) Ry (x) = Ai( x),

where Ai is the Airy function. From [1], 10.4.32 we know that 6.1 has a representa-
tion of the form (3.3) with the function

6.1') 0,(t)=1%/3.

The function ¢, satisfies all conditions stated for the function ¢ in Th. 3.2. Moreover,
hy(x) has the asymptotic behaviour (see [1], 10.4.59, 10.4.60)
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1

Ai(x)= Y

X711 exp (—5 ) [14+0(x—33), x—co
(6.2) 1 . .
Al —x)=—= x""M[sin (5 x?+)+0 (x=%)], x—z0.
R ‘ \

Hence it follows that foc Ai(x) e dx is boundedly convergent, i.e. k¢ H.

Further, we are going to consider an integral transform of the index type intro-
duced by Crum [6]. Here
(6.3) hy(x)=n"1 e~ K;(a), a>0,
where K, is the McDonald function (see [1}, 9.6). From [8], 2.4.18, 13. we know that
hy(x) has an integral representation of the form (3.3) with
(6.3 o)t)y=asht, a>0.

The function ¢, also satisfies the conditions stated for the function ¢ in Th. 3.2, More-
over, from [3), 7.13.2, (19) we have
[2n ) ’
o /2 KiAa):V% e [140 (| x[Y)], x——co
(6.4) .
> 2 . 2x 3
err? K,-.\-(a)=\!7 sin (x log == —x+71/4)+-0 (x732), x— 4o,

Hence the integral [ e™? K, (a) e’ dx is boundedly convergent, i. e. kg€ H.

Therefore the functions ¢, %, j=1, 2, satisfy the conditions of Th. 3.2 and Th. 4.1
so that the corresponding transforms /1, and H, are automorphisms of L* unitary in L,
and the inversion formulas have a symmetrical form.

Since ¢;€0©y, ¢,6C= one can apply Theorems 5.1 and 5.2 respectively and we
obtain that A, is an automorphism of &’ and of Z’ and that H, is an automorphism
of Z'. By means of simple modifications of the considerations above one can derive
similar results for a transform of the index type with a Hankel function in the kernel.
We will give these results without proofs.

Theorem 6.1. The integral transform

(6.5) gX)=(HY Y=L i.m. o [ eso=02 HO_ (a) f(y)dy, a>0

u, -0

is unitary in L, and the corresponding inversion formula is
) _ —1 _ . | o\
(65) f(x)—-(Hf,” g)(X)-(H‘az)g)(X)=lll-‘l;’_I’no; 92 _;{ TN H?(x-—y) ((l) g(y) dy
Furthermore, we have the factorization
(6.6) (HTOD f)(x)=—iF~1 elah> Fp,

Analogously we have
Theorem 6.2. The integral transforms

6.7) (HPfXx) = [ e HY_ (@) f(y)dy, a>0

(x=y)

and
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6.7 (HOf)x)=5 [ e=07 HA_ (a) f() dy,

where the integrals have to be understood in the sense of the principal value of
Cauchy, are automorphisms in the space L* and each of them is the inversion of
the other.

Furthermore, one can show, that these transforms are automorphisms in the spaee
Z too, so that by the usual definition (5.2) we can conclude, that their generaliza-
tions to Z’ are automorphisms of Z’.

REFERENCES

. Abramovitz I. A Stegun. Handbook of mathematical functions. N. Y., 1964.

. Akhiezer. Vorlesungen uber Approximationstheorie, 2nd edition. Berlin, 1967.
Bateman, A, Erdelyi. Higher transcendental functions. Vol. II. London, 1953.
Bremermann. Distributions, Complex Variables and Fourier Transforms. Reading, Ma., 1965.
u. A. Brychkov, H-J. Glaeske, O. . Marichev. Factorization of integral transforms
of the convolution type. /togi Nauki i Techniki. Mat. Analiz., VI NITI, Moskva, 21, 1983
3—41 (J. Soviet Math., 30, 1985).

NN
<ETZZ

6. M. M. Crum. Some inversion formulae. Quart. J. Math., 11, 1940, 49—52.

7. M. A, Necumark. Normierte Algebren. Berlin, 1958.

8 A. P. Prudnikov. Yu. A. Brychkov, O. I. Marichev. Inlegrals and Series. Vol. I
Elementary Functions, New York, 1986.

9. E. M. Stein. Singular integrals and differentiability properties of functions. Princeton, 1970.

10. E. C. Titchmarsh. Introduction to the theory of Fourier integrals. Oxford, 1937.

11. Vu Kim Tuan. K teorii obobshchennikh integralnykh preobrazovanii v nekotorom prostranstve

funktzhii. Dokl. Akad. Nauk SSSR, 286, 1986, 521-—521 (Soviet Math. Dokl., 33, 1986,
103—106). .

122 Vu Kim Tuan, O. I. Marichev, S. B. Jakubovich. Kompositzhionnaya structura inte-
gralnykh preobrazovanii. Dokl. Akad. Nauk SSSR, 286, 1986, 786—790 (Soviet Math. Dokl.,
33, 1986, 166—170).

Friedrich-Schiller-Universitat Received 20. 06. 1989
Sektion Mathematik

UHH
6900 Jena, GDR

Hanoi, Vietnam
106 Tran Hung Dao



