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FINDING THE ZEROS OF EXPONENTIAL QUASI-POLYNOMIALS
TATIANA I. ENCHEVA, ANATOLY YU. LEVIN

An algoriyhm for determining the sign-change points of an exponential quasi-polinomial is con-
sidered. Its computing complexity is discussed. An estimate for the number of odd-multiple zeros
obtained by the help of the discussed algorithm is also represented.

1. Introduction. Consider the question of finding the sign-change points of the
real quasi-polynomial

(1) 0= X exply )

in the interval (a, b). Among c¢;, &; (j=1,2,...,n) could be found non-real numbers
acting as complex-conjugate couples. Without loss of generality let us assume that all
the coefficients c; are not equal to zero and that all the coefficients A; are different.
Furthermore, since for n=2 the problem is trivial, let us suppose that n--3.

The importance of the given problem might be determined, for example, by the
fact that at each iteration of the algorithm for synthesizing time-optimal control in a linear
system proposed in [1] one has to solve such problems. Evidently the problem consi-
dered is of some interest itself.

Taking into account the availability of some well known and quite fast procedu-
res for finding the localized zeros of a smooth function (see e.g. [2]), it is easy to
understand that the problem discussed is actually reduced to the localization of the
zeros of f(£). By the localization of the zero £, of the function f(t) we, as usual, mean
the determination of the interval (¢, #)), at the ends of which f(¢) is opposite in sign
and f(#) vanishes only at the point 7, within this interval. It is clear, that the question
of localization is meaningful only for the zeros of odd multiplicity. (Besides, we are
interested only in them for the linear time-optimal control problem mentioned above,
because the even-multiple zero is not accompanied by a sign change of f(t) and hence
it is not a switching point of the control.)

There is a vast literature on the question of the determination of the zeros of a
smooth function. The methods for <“refining” the zero, i.e. for calculating approxima-
tely the zero for which an initial approach is known in advance have been covered
entirely. A classical method of such type is the Newton method (see e.g. [3, 4]). Its
advantages are the quite general assumptions for the domain of definition of a function
(that could be.any Banach space) and the fast convergence. However, this method c¢an
be used only if we have a qualitative enough initial approach of the searched zero.
Computational procedures related to the Newton method have been considered by many
authors. From the recent papers we may mention [5]. We do not dwell on the com-
monly known computational schemes for the scalar case, such as the chord method,
the chord and tangent method, the bisection method, etc. since they also find a loca-
lized (in some sense) zero and do not concern the question about how to localize the
zero itself.
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On the other hand, some methods for finding zeros of polynomials without preli-
minary localization are known. Here we can mention the classical Lobachevsky
method [6], the parabola method [7], etc. Note that these methods find not only real, but
also complex zeros. The convergence of some algorithms of this type has been con-
firmed only empirically.

The specificity of our situation is characterized by the following conditions:
1) f(#) is a quasi-polynomial; 2) we are interested only in real zeros (of odd multipli-
city) of f(#); 3) no initial approaches to the searched zeros are given in advance and
moreover their number is unknown. Apparently, in this respect the question of finding
(or, which is actually the same, of localizing) the zeros of f(f) has not been studied.

2. Algorithm. The approach proposed in [8] uses the specific properties of quasi-
polynomials; moreover, no preliminary information about the number or disposition of
the zeros is required. For the sake of simplicity we suppose that =0, b=7, where
T is a finite positive number (as for the case 7'=co see [8].)

2.1. Real case. Let 2, ¢; (j=1, 2,...,n) be real, A, <A,<<-.-<<}, and let us
suppose that not all the coefficients ¢; have one and the same sign. As it is known
(see e.g. [9], p. 117) the quasi-polynomial (1) has at most n—1 zeros. More precisely,
according to Descartes generalized rule (see [10], p. 60) the number of zeros of f
does not exceed the number of the sign changes in the sequence ¢y, ¢5, ..., Cp '

Let p(1=p=n) be the minimal index such that there is exactly one sign change

in the sequence ¢,, Cpiy, ..., C, Consider the following function system
(2) fO=£(), folt). - [ (8)
where
= fimr
L ¥ o N i e

fi(t)=c,exp(rt)+caexp (Agf)+ -+ +c,exp(,f)
fo()=CqYa9 €XP (M) + C3Ya3 €XP (Agh) + - - 4-€,Ya, €XP (X,0)

FoE)=¢,Y50€XP (Apt)+ Cps1Vp.ps1€XP (Apiaf)+ -+ + €Y p €XP (X1).

Since all y,;>0, the number of zeros of each function f, does not exceed the number
of sign changes in the sequence ¢y Cpiyrevs Cpe Therefore f, has not more than one
zero (in (—oo, +0)) and in the case f,(0)f,(7)<0 the interval (0, T) is a localiza-
tion interval for this zero. The latter can be found by means of one of the classical
procedures for determining localized zeros.

The remaining part of the algorithm consists of finding the sing-change points of
the functions f,_y, f,—a etc. up to fy=f consecutively. We describe briefly the gene-
ral iteration of the algorithm.

Suppose that all the sign-change points #}, #, .. .,tﬁ,k of the function f, (2<=k=p)

have already been obtained. Consider the intervals
(0, thy=(tk, t4), (8, 23), .. .,(t;k, t,’;kH)z(tf;k, T)
(If m,=0 this system is reduced to the unique interval (0, 7).) Compute the values

fk—1(0)=fk—1(t{§)’ fk~1 (tf)’ o0 o 'fk-—l (tf,.k)- flc—l (t,’:,kﬂ):fh—x(T)'
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By using the concepts related to the monotonicity and the Rolle theorem we conclude
that each of the intervals (¢, £ ), 0=l<=m,, is a localization interval for one of the odd-
multiple zeros of f,_, if and only if fu_; (¢})fe—y (¢f)<0.

Having obtained the localization intervals of all the sign-change points of f,_; in
(0, 7), we use again one of the known methods for the determination of these points.
Then similarly we find the sign-change points of f,_, etc. until we reach f,=f. Thus,
the algorithm can be treated as shifting the localization processes by the classical
procedures for computing the localized zeros. The following statement refers to the
computing complexity of the described algorithm.

Theorem I For finding all the sign-change points of the quasi-polynomial
(1) with real Ay, Aay- .- A, in a finite interval (a, b) to within € (e <(b—a)/2) the
following number of operations is sufficient

Cnéln((b—a)/e),

where C is a constant.

Proof. It is easy to see that the computing complexity of the algorithm pre-
sented is a sum of two components. The first component does not depend on the de-
sired precision & and, as it is easy to calculate, it does not exceed Cn?, where C,
is a constant. Indeed, the construction of the function system (2) requires arithmetic
operations on n? order. The number of the operations needed for computing the value
of the quasi-polynomial f(f) at a single point does not surpass Cyn (assuming that the
exponent is calculated for a finite number of operations). Hence, the values of the
functions (2) at the corresponding points are computed for the operations of n? order.
Finally, the number of operations needed for determining the sign changes in the cor-
responding sequences is of n? order.

The second component is connected with: 1) the computing complexity D of the
procedure used for finding (to within ¢) a localized zero and 2) the number of refe-
rences to this procedure, which as it is easy to check, does not surpass n2/2. In par-
ticular, if the bisection method is used and if / (=(b—a)) is the length of the loca-
zation interval, then

D<Cynlogy(l/e)=Cynlog, ((b—a)/e).

Naturally, we suppose that e<//2. (Otherwise, there is no need to use the procedure.)
Thus, the total computing complexity of the algorithm does not exceed

Clna + C3”3 log2 ((b - a)/E) é(cl + C3) nsd logg ((b - [l)/S),

what we had to show.

Remark 1. We have considered the interval (a, 6)=(0, 7). It is clear that the
use of any finite interval (@, b) does not influence on the correctness of the estimate.
The case of the infinite interval will be reduced to the case of the finite one if we
use the upper bound 7, for the zeros of the quasi-polynomial [8] and its analogous
lower bound f,, To obtain f,, we may use, for example, the upper estimate ?ma,
for the quasi-polynomial f(£)=f(—?).

Remark 2. To prove theorem 1 it has been enough to restrict ourselves to
the bisection method, which guarantees a geometrical range of the contraction of the
localization interval. Other procedures applicable to refining localized zeros (the New-
ton method, the chord method, etc.) guarantee still more rapid (superlinear) conver-
gence. We would not consider this question in details for two reasons. First, the no-
tion of the localization interval complicates (some conditions related to the signs of
of the f derivatives should be defined). Second, the estimate would be improved, ap-
proximately speaking, through replacing In(l/e) by Inln(1l/e); in the range of & used
in practice (107®—10-%) this fact is not of essential importance.
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Now let us compare the algorithm described and the trivial way of determining
(to within &) the sign-change points of the quasi-polynomial f in the interval (a, b)
(namely, the consecutive calculation of the values of f at the points a, a+2¢, a+4s,
etc. up to b) with respect to their computational complexity. The second method re-
quires C’n (b—a)/e operations, where C’ is a constant. Thus, with the decrease of ¢
the computational complexity increases more rapidly than that of the algorithm des-
cribed above, where the dependence on & is of logarithmic nature. On the other hand,
in our algorithm with the increase of n the computing complexity increases more ra-
pidly (proportionally to 73 instead of n). However, note that in the linear time-optimal
control problems mentioned above this fact is not so important, since n, as a rule, is
not great. It is clear that the computing complexity of the trivial algorithm could be
lowered by increasing €, but then it becomes possible to omit some sign changes of f,
which is avoided in our algorithm.

2.2. Non-real case. For the sake of clarity we assume that f has m>0 different
couples A;=p;+i0;, Ay.;=p;—io;, 0;>0 (j=1, 2,...,m) of complex conjugate coef-

ficients and n—2m=0 different %; (j=2m+1, ..., n) real coefficients. (Recall, that in
this case ¢, ¢4y (J=1, 2,...,m) are complex conjugate, ¢; (j=2m+1,...,n) are
real.) Consider the function system
(3 : F@O=f1(®), fa@),- - fmrr (D),
where
a2 2
) fu= (ot 02_,) &r1
(5) &i—1=Xp (Px—a—Pxr—1)8) fr

(k=2, 3,...,m+1; pp=0) System (3) can be written in the form

m n
fit) = 12—1 (csinw;t+c) ,  cosa;t)exp ((p—Po) ) +/—°},:n+1 chexp ((h;—po)t)

m n
A= E (Gsinosttd, cosoexp(ps—p) 0+ T dep(Oy—p)t)

n
Fo (D= (e i 0 £+, €05 0 ) exp (P—Pm-) )+ E 7 exp (O Pr))

fme1 (&)= j=§m+l e+l exp (by—pm) 2)-

Since in the quasi-polynomial f,, all c*! are real, all its sign changes in (0, 7)
(evidently their number is not greater than n—2m—1) can be determined by the al-
gorithm described in 2.1. (For n=2m there are no real A; and system (3) consists of
m functions. In this case the sign changes of f, would coincide with the sign chan-
ges of a function of the kind sinw, (f—%), i.e. they can be written in an explicit
form.) )

The remaining part of the algorithm, similar to the algorithm in 2.1, consists of
the consecutive determination of the sign-change points of the functions Ton f,,,_l, etc.
up to f,=f. Now let us show how if we know all the sign changes of f, in (0, 7),
the sign changes of f, , in (0, 7), 2<<k=m+1, can be localized and computed.

Consider the intervals

, (r, ,—1)r
6) AL, =0, =) A2 =(o—, =) At =(—A 2 T),

4
Op—y Opr gy D q
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where
- Tw,_y/n, if Two,_,/n is integer
U] [Twgp—y/m)+1, otherwise

(k=2, 3,...,m+1). The real factorization of the operator ﬁ.—j +o?_, (see [10]. p. 128):

az 1 d " d £
- —_ o) R 7 [P 2 - —eeizlrloey
(7) (g +05_1) 81 =51 o, ,t dt (sin*w, £ dt sinw, f )

(Injo,_ <t <(I+Dm/0,_y, (=0, 1,...) can be realized in each of the intervals (6).
Since all the constructions for each of the intervals (6) are performed analogously, it
is sufficient to consider only one of them, e.g. A=A} . f

Let ¢, £% ..., t,’;’k (n,>>0) be all the sign changes of the function fe in the inter-
val A. Denote by /,_, the number of sign changes of the function f,_, in the inter-
val A. With regard to (4) and (5), by virtue of the factorization (7) and the evident
modification of the Rolle theorem l, ;=<n,+2. (Otherwise the function f, would have
more than n, sign changes in A.) Let

~ A d g
8 t) = sin? @,_ t————k‘_—]—“°
@®) [+® k=1%7dt sino, ¢

By virtue of (4) and (7) we have
, d7,
9) —Z=sinw,_, ¢t f, (£).
dfy,
It follows from this, that in each of the intervals
O, £5), (¢ th), ..., (t, W)

nk’
the function f, is strictly monotone. By computing the values
T Fu@h), oo T, fu(mlops)

and fixing the sign changes in this sequence, we find the localization intervals of all
the sign-change points of f, in A. With the help of the classical procedures for the de-
termination of the localized zeros we find the sign-change points of the function f
in A. Let us denote them by Z, tff,...,t% (0<n,=n,+1). By virtue of (8) the
intervals
Gk Tk Gk Tk Tk o 3 >
© By=@, ). @ .. E )= to)
t
Si”‘;‘(—)[ and therefore in each of
k—1
them g, , has no more than one sign change. In order to clarify in which of the in-
tervals there exists a sign change, let us compute the values

8r—1 (?5): 8re—1 (77)- s Br1 (?’%ﬁ‘)'

are intervals of strict monotonicity for the function

It can be easily seen, that the interval (£f, Zf11), 0=l=mn, is a localization interval

for a sign change of the function g, if and only if g, (#)gey(f1+1)<0. (In a par

ticular case, when g, ;(f6)=0 or g,,_,(t:~k )=0, one should consider the value
_ - +1

o (b or (1) gy (t:~k ). where [ is the order of the first non-zero derivative of

g, at a given terminal point of the interval A.) After finding all the localization
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‘ntervals of the sign-change points of g, , in A we, naturally, again use the classical
procedures for the determination of these points.

As a result we obtain all the sign-change points of g, , in A=A} | and, evident-
ly, we clarify the signs of g, , between these points. We repeat the process for the
interval AZ |, etc. up to Ak;1. Hence, in view of (5), we find all the sign-change
points of f, , in (0, 7).

Thus, the algorithm for finding the sign-change points of the quasi-polynomial (1)
with complex %, is realized through applying the localization procedures and the com-
putation of the localized zeros consecutively as in the real case. However, in contrast
to the real case, here the computing complexity of tte algorithm depends not only on
the desired accuracy, on the length of the considered interval and 7, but also on the
number of non-real 4, and on the values w;=/m,. Usually great ;| correspond to
“quickly oscillating” quasi-polynomials, for which the problem complicates. Before pro-
ceeding- with the computing complexity evaluation of the described algorithm we would
like to point out that this algorithm might be used to estimate the number of sign
changes of the quasi-polynomial (1) in an arbitrary finite interval (a, b) as well.

3. Number of zeros of the quasi-polynomial. The notations m, f,, ©, AV A
are the same as in 2.2. The following statement holds.

Theorem 2. The number of sign-change points of the quasi-polynomial (1)
in the finite interval (a, b) is not greater than

(10) n—1+2=% 5 119,
LI

Proof. In order to use the previous notations let us assume that /—a is a new
variable. Then the interval (a, ) goes over into the interval (0, 7), T=b—a.

Let the following condition be fulfilled :

/) Any of the functions fy, fo. ..., fn., is different from zero at all terminal
points of the intervals of the kind (6). '

Denote by n/(/ ) the number of sign changes of f,(f, ) in the interval A] |

(k=2,3,....,m+1; j=1,2,...,r,,) and by VN, the number of sign changes of f, in
0, 7Y (k=1, 2,..., m+1). Obviously, in view of the condition &/ we have

T n

k—1
Ny= 3 ), New= % U_, k=23,...,m+1.
j=1 7=t

Further, by virtue of the factorization (7) and the Rolle theorem /],  <n/ 42
(k=2,3,....,m+1: j=1,2,...,r,). From this, in view of the definition of r,_,
and the positiveness of ©, _,=/mi, , (=2, 3,...,m+1), it follows that

Tk—1 Tkt Tkt
Nk—lr‘ i?] l{'_‘g i§‘ (ﬂ“i‘ 2) = jEl ’ljk+2’k_1

=N+ 2r, =N+ 2(To,_/n+1),
1. e.
(11) Ny —N=2(T | Imhrp_y|/m+1)
(k=2, 3,...,m+1). Since the quasi-polynomial f, ., has only real coefficients
Ny =n—2m—1.
From this, with regard to (11) it follows that
Ny=(Ny—Ny)+(Nag—Nyg)+ - + (Npy— Np1) + Ny
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m+1
<% AT|Imhy r+1)+n—2m—1
k=2

T 2m
=— X |ImAj|+n—1.
Tl

Hence the number of sign changes of f,=f in (0, T) does not exceed

T n
(12) ﬂ—'l'f-—’;‘ E

}Imk,—!.
1

Thus we have found the required estimate under the condition . Now let us show,
that this does not result in restricting the generality, since the condition &/ can al-
ways be provided by means of a small “shift”. In detail, consider the quasi-polyno-
mial f(¢—¢), where £¢>0. Denote by N(e) the number of sign changes of f(f—¢) in
(0, 7). Let T’ be the greatest sign change of f=f; in (0, 7). (If f has no sign chan-
ges in (0, 7), then we can assume that 7’=0.) Evidently

(13) N,<N(¢) for e<g,=T—T".

Since the number of terminal points of all the intervals A/ , as well as the number
of zeros in (0, 7) of all the functions f,, is finite, the condition &/ for f(f—e¢) will
be fulfilled for all € (0, &,) except for finitely many. Therefore, one can always choose
a “shift” e€(0, g)) such that the condition o is fulfilled for f(¢—e). By virtue of the
statements proved above M(¢) does not exceed the value (12). Hence, in view of (13)
it follows, that the same holds for N, too. Thus, the theorem is proved.

Remark 1. It is evident, that if m=0, then the value (10) is equal to n—1,
i.e. the estimate coincides with the one known for the sign changes of the quasi-
polynomial (1) comprising only real coefficients. In conformity with the number of the
optimal control switches theorem 2 can be treated as a generalization (for the com-
plex case) of the Feldbaum theorem (see e. g. [9], p. 116).

Remark 2. Let us consider the accuracy of the estimate (10). For concrete
n, m the estimate (10) can be improved. For example, for n=2, m=1 the estimate
will be valid if © is replaced by 2r. On the other hand, it can be shown, that without
additional information on the values of n, m the constant m appearing in the estimate
cannot be improved. (The proof of this assertion is rather bulky and we would not
discuss it in this paper.)

Remark 3. Up to now we have treated the quasi-polynomial f as a function of
the real argument f. However, it is possible to treat it as a function of the complex
argument z as well. Since f(z) is an entire function, then the following estimate will
be valid (assuming that f(0)=-0) for the number MT) of zeros in the circle l|z|=T

(14) MT)=In( Az f@1f0))

(see e. g [I1], p. 26). It is clear, that the right-hand side of (14) is an upper bound
for the number of f zeros also in the interval (0, T) as well. One of disadvantages
of this estimate in comparison with the estimate (10) is that with it the specificity of
the real axis is ignored: the right-hand side of (14) is great for greal values of [ 2]
(which are great not only for great values of |/m},;|, but also for great values of
[ReX,[). In the estimate (10) |ReA;| does not appear at all.

4. Computing complexity of the algorithm. Let us assume that the computation
of the exponent (and also of the sine and the cosine) is performed in a finite num-
ber of operations. The following statement is valid.
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Theorem 3. For finding all the sign-change points of the quasi-polynomial
(1) in a finite interval (a, b) to within € (e<(b—a)2) the following number of ope-
rations is sufficient

Cn¥o(b—a)/(n+1)In((b—a)/e,

where C is a constant, ®= max [m k.
j=l,n

Proof. In order to determine the sign changes of the quasi-polynomial f,=f in
t~he inLerval (aL b) we find all the sign changes of the functions fp.y fp .. f1r
fwsvs faw -+ fo in (a, b). From theorem 2 it follows, that for the number N, of sign
changes in (a, b) of the quasi-polynomial f, the following estimate is valid

Nysn—1+ 20222 1 gy
(k=1,2,...,m+1). In view of (9) the number of sign changes of f, in (a, b) does not
exceed Ny+1 (k=2,3,...,m+1). Thus, the number of all sign changes to be found
does not exceed

m+1 b — ) M+l _
}:1 (n—1+ fﬂ’_’t_“ﬂ(”l+1_k))+ I (n +2£’—:)—ww+l—~k))
k= k=2

=(m+1)(n—1)+mn+ ~(£—»’-ta-)m— 2m? <2n¥(b—a)n/n+1).

It is not difficult to see (analogously to the proof of theorem 1), that the con-
struction of all the functions f,, f, and the determination of all the localization inter-
vals requires a number of operations of order

n}(b—a)w/n+1).

The determination of all the localized sign changes with the help of the bisection
method requires a number of operations of order

n¥(b—a)o/n+1)In((b—a)/e.

Thus, the total computing complexity of the algorithm does not exceed
Cin((b—a)o/n+1)+Cond((b—a)o/n+1)In((b—a)/e)
<(C,/In2+4Cy)n*((b—a)o/n+ 1) In((b—a)/e),

what was to be proved.

For @=0 (i. e. if all the coefficients A; are real) we obtain the result of theorem 1
as a special case. When discussing theorem 1 we have pointed out an advantage of
our algorithm for g1 if compared to the trivial computation of f values at the

points @, a+2e, a+4¢,... The same advantage is valid since ¢ is included only loga-
rithmically in the estimate of the computational complexity of the algorithm.
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