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RELAXATIONS OF ORTHOGONAL PROJECTORS
DIETER SCHOTT

Linear operators T reducing the norm of elements with the exception of fixed points are investi-
gated in Hilbert spaces. Procedures are given to construct such so-called relaxations by combination of
other linear operators. Applications and connections to the theory of linear iterative methods are men-

tioned.

1. Relaxations and iterative methods. Let X and ¥ be Hilbert spaces. The space of
all linear continuous operators on X into Y is denoted by L(X, ¥). Iterative methods
of the general form

(11) X,3y= /=D, A)x,+D,b=x,+D,(b—Ax,)

with given elements x,€X, b¢Y and operators A¢L(X, ), D,¢L(Y, X) can be used
to determine solutions or generalized solutions of the linear operator equation

(1.2) Ax=b.
The rests or defects r,=b—Ax, of (1.2) related to x, fulfil the iterative relation
(13) ros1=([—AD,)ra.

In papers [7] and [9] the operators D, have been chosen so as the corresponding
operators T,=/—D,A in (L.1) or S,=/—AD, in (1.3) to represent the so-called rela-
xations of orthogonal projectors (orthoprojectors). The relaxations T of orthopro-
jectors T” are introduced in [7] as operators which are norm-reducing outside the range
R(T") of T". This concept in [9] is reduced to the special case of operators

(1.4) T=(1=MI+AT", |1-A|<L.

In this paper such operators are said to be scalar relaxations since they are
characterized by the scalar A. A wide class of relaxations T is constituted by each
orthoprojector 7". They belong to a certain neighbourhood of 7" and have some ana-

logous properties. Thus convergence results for the iterative methods (1.1) are pre-
served when the orthoprojectors 7', orS, are replaced by the corresponding relaxations

(cf. [7), [9] with [5], [6]).
Now we will explain the origin of the name “relaxation”. If we choose the opera-

tors D¢ L(Y, X) and put
D,=\D,, |1-2,|<1.

in (1.1) and (1.3), then we get

(1.1 Xni1=(I—2D,A) X+ haD b= x,+1,D, (b—Ax,),

(1.3) fuer= (1= ADYr,.

By using the notations 7, =/—D.A and S,=I—AD, we have
Ty=(1=M)44, T, S=(1=2) +4,S,
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178 D. Schott

If 7, or S are orthoprojectors, the corresponding 7, or S, turn out to be scalar re-
laxations (see (1.4)). Usually the scalars A, in (1.1”) and (1.3’) are called relaxation
parameters. For real A, the condition |1—A,/<1 means 0<XA,<2. Itis convenient
to speak of underrelaxation for 0<i,<1 and of overrelaxation for 1<),
<2 (see e.g. [12]). In [1] iterative methods (1.1) with

D,=(E,A)*A,E,
are considered, assuming finite dimensional spaces X and Y, where the matrices £,

generate blocks of A and b respectively and the matrices A, being quadratic of block
size satisfy '

Thereby (E£,A)* denotes the orthogonal generalized inverse (or Moore-Penrose inverse)
of £,A (see e.g. [3]). For this choice of D, the relaxation parameter A, is replaced
by a relaxation matrix A,. In section 4 it will be proved that the matrices

To=1—(E,A)*AE,A

represent relaxations of the orthoprojection matrices
T.=1—(E,A)*E,A

in our sense under the mentioned conditions for A,.

In this paper a general concept of relaxations is proposed. We study the global
properties of such operators with the exception of convergence results and the pheno-
menon of underrelaxation or overrelaxation which will be the topic of other papers.
Besides, we show that there is a close connection with the concept of projection
kernels playing also an important part in the convergence theory of iterative methods
(1.1) (see [4], [7]).

2. Projection kernels of an operator set. This section contains some results
from [7] without proving them. Let /7 be a Hilbert space and {7,: n¢N} be a set
of operators 7,¢L(f1)=L(H, H). Null spaces and ranges of 7, will be denoted by
N(7,) and R(7,) respectively.

Definition 2.1. P¢L(H) is called a projection kernel of {T,} if the
equations

P2=pP=T,P=PT,

hold for all n. A projection kernel P of {T,} is said to be orthogonal if it is
selfadjoint (P=P").

Projection kernels can still be characterized by other properties referring to sub-
spaces of the operators involved.
) Theorem 22. For a projector P¢L(H) the following conditions are equiva-
ent .

a) P is a projection kernel of {T,}.

b) R(P)< N N(/--T,) and N(P) > span |J R(/—T,) hold.

n n

c) T,|R(P)=1|R(P) and T,N(P)<= N(P) hold for all n.
The property b) of projection kernels where span stands for the closed linear hull
suggests a further notion.

Definition 23. A projection kernel P of {T,} is called optimal if the
equations

R(P)= (I N(/—T,), N(P)=span UR(—-T,)

are fulfilled.
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For a set {7T,} there can be several projection kernels but at most one optimal pro
jection kernel. Under certain conditions the existence of optimal projection kernels can
be guaranteed.

Theorem 24. Let {T,} be a set of operators satisfying N(I—T,)=N(—T}).
Then {T,} has an optimal projection kernel, namely the orthoprojector P with

R(P)=NN({—T,), N(P)=span U R(/—T,).

3. Nonexpansive linear operators and relaxations of orthoprojectors. Again,
let /7 denote a Hilbert space. In the next sections the fixed point set N(/—T) of
operator 7 plays an important role. For convenience we introduce

Definition 3.1. The subspace N(I—T) of H is said to be the carrier of
T¢L(H).

Although we are interested first of all in relaxations 7, some results more gene-
rally hold for nonexpansive linear operators 7 (|| 7||=1). Relaxations will be de-
fined here analogously as in [7] but without reference to an orthoprojector.

Definition 3.2. T¢L(H) is said to be a relaxation if || T ||<|| x| holds for
all x¢N(I-T).

Therefore a relaxation is norm-reducing outside its carrier. Evidently relaxations
are nonexpansive. Trivial relaxations are the nulloperator O with the carrier {0} and
the identity operator / with the carrier /. Contractive linear operators T (|7 |< 1)
are relaxations satisfying N(/—7)={0}. An orthoprojector 7’ is a relaxation with
N (/—T")=R(T"). More general the linear combinations (1.4) of / and 7’ are relaxa-
tions satisfying N(/—T)=R(7") (see [7], [9]). But certain non-expansive operators T,
for instance isometric operators T (|| Tx|=|| x| for all x) with N(/—T)cH, are
no relaxations. Relaxations are just those nonexpansive operators T for which || Tx||
=|/x || holds only on the carrier.

Linear and affine invariant subspaces of an operator 7¢L(H) play an important
role in the study of its properties. For nonexpansive operators and moreover for re-
laxations these subspaces have the following property:

Lemma 33. Let T¢L(H) be nonexpansive. Then all invariant affine subspa-
ces of T meet the carrier N (I—T). Especially the intersection point of such a sub-
space with the orthogonal complement of its linear part lies in N(/—T).

Proof. Let N,=z+N be an invariant affine subspace of 7T with the linear part
N and the shift element z. Opposite to the second assertion we assume that the only
element 2’ in N, N fails to be in N(/—T7). Now 2’ is the uniquely determined ele-
ment in N, satisfying ||2’| =dist (0, N,). Since 2'¢N(/—T) and 7z'¢N,, then the
contradiction || 72" [ >||2’"|| resulrs. The first assertion is an immediate consequence
of the second.

The last statement can be used to decide the question when linear combinations

T=(1—-\)I+AP
of 7 and a projector P represent relaxations. First we list some properties of 7 which
can be proved easily.

Lemma 3.4. a) The carrier of T is R(P). b) The affine subspaces z+N (P)
with z¢ H are invariant under T. c) || Tx||=|1—A|-|| x| for all x¢N(P).

For P=J or A=0 the operator 7 is the trivial relaxation /. Otherwise T is expansive
in the case |1—A|>1 and isometric in the case |1—A|=1, A%0. In both cases 7 is
no relaxation. The other possibilities are covered by the next result.

Theorem 35. Let T be an operator of the form

T=(1—2)I+AP, PP=P, |[1-L|<1.

Then the following statements are equivalent: a) T is a relaxation. b) T is nonex-
pansive. c) P is orthogonal.
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Proof. The first implication is obvious. For the second implication we assume T
to be nonexpansive. By Lemma 3.4 the affine subspaces N,=2z+N(F) are invariant
under 7. Evidently N, meets both N(P)L and R(P)=N(/—7) at one and only one
point. In view of Lemma 3.3 that means N (P)- < R(P). But this leads to N(P)"
=R(P) and P=P". The validity of the last implication has already been mentioned
(see above and section 1).

In the special case A=1 we obtain the equivalence of P=P* and |P| <1 for pro-
jectors P. This result can yet be found in [2, p. 84] or [11, p. 84].

Nonexpansive operators possess an outstanding invariant linear subspace, namely
the orthogonal complement of their carrier.

Theorem 3.6. Let T¢L(H) be nonexpansive. Then TN(({—T)L < N(/—T)~-
holds.

Proof. We consider arbitrary elements # in N(/—7) and v in N(/— T)!\{0}.
Taking into account the orthogonal decomposition

H=N{—T)®N{—-T)-
we get (¢, v)=0, u+v¢N(/—T). Furthermore it follows
Tu+v)y=Tu+Tv=u+Tv
and
[ Ta+o)|P=|la+Tv 2=|u|?+| To|*+(u, Tv)+(T7, u)
=||u|?+| To|2+2Re (s, To)<|a+v|2=|u|*+|v|p
since 7 is supposed to be nonexpansive. Hence
2Re (u, To)<| v |2—| Tv|
If we replace u consecutively by Au, —Au, Aiu and —Aiu, where A is a positive sca-
lar and 7 is the imaginary unit, then we obtain the inequalities
+2\Re(u, To)<||v|2—| Tv|]?,
F2lmu, To)=|v|*—|Tv|?
due to the relation Re iz=—Imz for an arbitrary complex number 2. This means

0=|Re(, Tv)|= o (|2|2—| To|2),

0=|Im (4, Tv)|< (|7 [*~| To2).

Since these relations hold for any A >0, then
Re (u, Tv)=Im(u, Tv)=0

and (4, Tv)=0. But now we have 72¢N(/—7)! and thercfore the assertion holds.

The theorem shows that a nonexpansive operator 7 is completely reduced by the
pair (N(/—T), N(/—T)") of orthogonal subspaces (for the notion see [10, p. 268]).
Besides the affine subspaces z+ N (/—T)! with z¢ // remain invariant under 7. (With-
out loss of generality z can be chosen in N(/—7).) Beyond it the affine subspaces
2+N(/—T) with z¢/{ are mapped by T onto the parallel affine subspaces 7z +N(/— 7).
(Here we can suppose z to be in N(/—7)L.) Thus 7 acts in 2+N(/—7)! analogously
as in N(/—T)"%, only parallelly shifted. These facts allow the following characteri-
zation of relaxations.

Corollary 3.7. T¢L(H) is a relaxation if TN(—T) < N({—-T)., [ Tx |
<|x|| for all x¢N(/—-T)\{0}. A corresponding” result is true for nonexpansive
operators T. Here the strict inequality < has to be replaced by <.
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Operators 7 with the invariant pair (N(/—7), N(/—T7)1) can be connected with
the orthoprojector 7 determined by R(7')=N(/—T7). In this sense we speak of rela-
xations 7 of orthoprojectors 7" (see also section I). Obviously relaxations with the
same carrier are relaxatons of the same orthoprojector.

Now we are ready to characterize relaxations by some other conditions.

Theorem 3.8. Let T'¢L(H) be an orthoprojector. Then the following state-
ments are equivalent:

a) T s a relaxation of T'.
b) Tx=x for x¢R(T"), | Tx|<| x| for x¢R(T").
c) T|R(T)=IIR(T"), TN(T")= N(T"),
| Tx[l<llx|| for xeN(T')\{0}-
d) R(TYS N({—T), N(T"Y2R(/—T),
| Tx||<!| x|l for xeN(7")\{0}.
e) R(T)=N({—T), N(T")=R({U=T),
ol Tx < |x]|| for xe N(T')\{0}.
f) T'"=T'T=TT', | Tx—T'x|<| x| for x=0.

Proof. 1. In the cases a) and b) the equation R(7")=N (/—T)is fulfilled. There-
fore by Definition 3.2 both cases coincide.

2. 1f we put P=T" and T,=T for all n in Theorem 2.2 and use Definition 2.1
we get the equivalence of the three conditions

T|R(T")=I|R(T"), TN(T")< N(T"),
R(T)S N(—T), N(T) 2 R(I—T),
T'=TT'=T'T.

On the other side each of these conditions ensures the equivalence of the norm
relations

| Tx |<| x| for x¢R(T"),

[[7x| < | xl| for xe¢N(T")\{0},
| Tx—T"x| <|| x| for x=0.

Obviously the first relation implies the second. The inversion follows if the pa-
rallel action of 7 induced by the pair (R(7”), N(7”)) is observed. (The direct proof
is based on the Pythagorean relation.)

Assuming the second relation we obtain

| Tx—T'x| = | TU—=T") x| <| =T x| <[ I-T"| .|| x||=] x|

and thus the third. The inversion is evident.

3. The norm conditions in b) — e) cause the equations R(7")=N(/—T), N(T")
=N (/—T)" and the inequality ||7||<1. For nonexpansive operators 7 the decom-
position

H=N({—T)Y®R{I—T)

holds (see [11, p. 214]). The equivalence of the statements b) —f) now it can easily
be seen if you take point 2 of the proof and Theorem 3.6 into account.

For nonexpansive operators 7" analogous equivalent statements cannot be estab-
lished. But starting with a’) 7 is a nonexpansive operator connected with 7" modi-
fied statements b’) — {’) can be derived by changing the relation < to =.

The last theorem has still some other consequences.

5 ldCorollar y 3.9. Let T¢L(H) be a relaxation. Then the following properties
old :

a) N/—T).=R(I=T") = R(I=T), NU—=T)=N({—T").
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b) N(/=T)=N((/—T)*), R(U=T)=R((U—=T)}), (/—T) RU—T)=R{U—T).
c) A=I—T has a group inverse B=(I—T)*(/—T"), that is, the relations ABA= A
BAB=B, AB=BA are fulfilled.
d) The corresponding orthoprojector T' is the optimal projection kernel of {T)}.
Proof. Let T be a relaxation of 7.
1. In view of Theorem 3.8 the equations

N(7")=N({—T)L=R({—T)
are satisfied. On the other hand, the relations for orthogonal subspaces supply
N(/—T)L=R({—T*),N({/—T)=RUU—=T)-=N(I-T")
(see e. g. [2, p. 82], [10, p. 250]).

2. A=/—T is a so-called decomposition regular operator, that is H=N (4) PR(A)
(see [8, Definition 1] and Theorem 3.8e)). By this statements b) and c) are contained
in [8, pp. 154-155].

3. Using the notions of Definition 2.3 and Definition 2.1 the last statement follows
by Theorem 3.8.

The assertions of Corollary 3.9 hold also for nonexpansive operators 7. Finally
we deal with relations between 7 and the adjoint operator 7*. 7' is nonexpansive iff
T* is. This immediately follows from | 7'||=|| 7*|| (see e.g. [10, p. 249]). For normal
operators 7 (77"=T"T) the property of relaxation evidently is transferred from 7
to T since || Tx||=| T*x| holds in this case (see [10, p. 331]). But the assumption
of normality is not necessary.

Theorem 3.10. T¢L(H) is a relaxation iff T* is a relaxation. Thereby the
carriers of T and T* coincide.

Proof. Corollary 3.9 supplies N(/—T7)=N(/—T*)if T is a relaxation. Obviously
we obtain the same equation if 7 is a relaxation.

In each case the subspace

N=N({/—T)L=N({—-T")L

is invariant under 7" and 7. In view of Corollary 3.7 we have to show that the sta-
tement

—|| Tx||<|| x| for all x¢ N\ {0}
is fulfilled for 7" iff the corresponding statement
—||T*x||<||x | for all x€ N\ {0}

holds for 7. It suffices to show one direction because of (7°)°=7. Opposite to the
assertion we assume that there is an element x’ in N\ {0} satisfying || 7"x’| = x|
Without loss of generality we can choose || x’|[=1. Now we restrict us to N.

Since 7’7" is a nonnegative selfadjoint operator, we find

sup {(TT"x, x): || x||=1}=(| TT*||=|| T |p=<1
(see [10, pp. 324-325, pp. 330-331]). Besides we get
| Tx"|2=(T"%', T*x")=(TT"x", x")=1.
Hence it is
sup{(7T7°x, x): || x||=1}=(TT*'x", x')=1.

But then I must be an eigenvalue of 77" since the supremum is attained (see [10,
p. 325]). That means 7'7"x’=x’and 7'7y =y’ withy'=T7"x'.Thereby x’ cannot belong
to N(7*)=N(7T") in view of | x’||=1. Thus y'#0. Then we can conclude that
2'=y'/|ly"|| satisfies
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T'Tz'=2, ||z'||=1
Now it follows
| T2 |[2=(T2", T2")=(T"T2', 2)=(2", 2N=|2'|P=1

in contradiction to the assumption.

4. Composite relaxations and projection kernels. If nothing else is mentioned,
the operators act on Hilbert spaces H. The first statement gives a connection between
the projection kernels of orthoprojectors 7', and corresponding relaxations 7.

Theorem 4.1. Let T, be relaxations of orthoprojectors T,. Then each projec-

tion kernel P of {T’,} is also a projection kernel of {7.} and wvice versa. Moreover,
{T.} and {T,} possess a common orthogonal projection kernel T' being optimal for

both {T,} and {T,}.
Proof. 1. In view of Theorem 3.8 we obtain

N(U=T,)=R(T)=N{U—-T)).

R(I—T,)=N(Tn)=R(I— Ty)
for all ». This means
NN({—Ty)=nNN{I=T)),

span |J R(/—T,)=span |J R(/—T)).

Now the first assertion is a consequence of Theorem 2.2.
2. By Theorem 2.4 the set {7} has an orthogonal optimal projection kernel 7" satisfying

R(T")= N N(—T,),N(T")=span U R(/—T)).

If you consider the relations in the first part of the proof, then you get also
R(7")= N N(—T,), N(T")=span U R(/=T).
n n

In connection with Definition 2.3 this shows the second assertion.
Next we can observe that products of relaxations are relaxations too. Thereby
the carrier of the product is the intersection of the carriers of the single factors.
Theorem 4.2. Let T, be relaxations of the orthoprojectors T, for i=1,..., k.
Then T=T,...T, is a relaxation of the orthoprojector T' determined by

R(TI)= ‘ﬁ—‘ R(Ti) = l[j]:] N(I——T,)

Proof. By Theorem 4.1 the sets {7},..., 7,} and {Ty,..., T} have a common

orthogonal projection kernel 7" satisfying the conditions stated in the theorem.
If x¢R(7"), then x¢N(/—T,) for i=1,..., k. Hence Tyx=x for i=1,...,k and

Tx=T,...Tix=X.
If x¢R(7"), then there is a natural number j=£k such that

x¢N({—=T)), x¢N(—T,) fori=1,...,j—1L
Therefore we get
I Tx||=|Taee - Typr Ty Tpmy oo Tax||

SITalle o N Tyl TSI Ty x(I<]l X
Theorem 3.8 supplies the assertion.
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By Theorem 4.1, Theorem 3.8 and Corollary 3.9 the orthoprojector 7’ in Theo-
rem 4.2 is the optimal projection kernel of {7y,..., T}, {T,..., 7.} and {T'}. Espe-
cially it is

k k
N(—T)= (| N(/=T)), RU—=T)=span U R(/~T).

An immediate consequence of Theorem 4.2 is

Corollary 4.3. The powers TF of a relaxation T are relaxations with the
same carrier as T.

Besides we get

Corollary 4.4. Let T be a relaxation. Then TT' and T'T are selfadjoint
relaxations with the same carrier as T.

Proof. If 7 is a relaxation, then 7° is a relaxation with the same -carrier in
view of Theorem 3.10. Therefore the assertion follows by Theorem 4.2 since 77" and
7°T are selfadjoint.

The assumptions of Theorem 4. 2 can be weakened if we suppose operators with a
common carrier. Somewhat more general we obtain

Theorem 4.5. Let T' be an orthoprojector and T; (i=1,...,R) be nonexpan-
sive operators with the property

lﬁl N({/—T;)=R(T").

Then T=Ty... T, is a relaxation of T' if one of the T, say T, is a relaxa-
tion of T'.
Proof With the abbreviations y=S8x, S=7, ;... 7, the inequalities
I Txll=ITyyli=sliyi< x|
hold. For x€¢R(7’) we find at once
Tx=T4...Tix=x.
For x¢ R(7’) we must distinguish two cases. If y is not in R(7")=N(/—T)), then
Jj—1
NT,yll<|lyl. If yisin R(7’), then y¢ ﬂl N (/ — T;) = N({—S). Besides we get
i

x¢#N (/—S) since otherwise it would be x:yeR(T') in contradiction to the assump-

tion. Due to the remarks after Theorem 3.6 the affine subspace N,=x+N({/—S8)L is

invariant under the nonexpansive operator § and meets N(/—S) in that point of N,

which has the least distance from 0. Therefore it is || y|/<|/ x| In both cases we have

I Tx||<[ x|l

Now we give certain conditions under which sums of operators represent relaxations.
Theorem 46. Let A, (i=1,...,k) be operators for which positive numbers

A, and linear subspaces N, exist so that

a) M+ A,=1;

b) Ajx=xx for x¢N, (i=1,...,k);

o) |Ax||<X | x| for x¢ N, (i=1,...,k).

]
Then T=A+---+A, is a relaxation with the carrier N= (| N,.
=1
Proof. If x¢N, then x¢N, for i=1,..., k Hence
Tx=(Ay+ - +A) x=M+ - +h)x=x

in view of a) and b). Furthermore it is || A;x| =2, | x| for x¢N. If x¢ N, then x ¢ N,
for at least one /. Therefore we get [|A,.x| <A,/ x|, where because of ¢) for at least
one 7 the strict inequality holds. Thus we find
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I Tx|<||Awxll+-+ Apx <A [l x4 R ][] =] 2]l
In Theorem 4.6 the spaces N, represent eigenspaces and the numbers 2, the corres-
ponding eigenvalues of the operators A,. The operators 7,=2;1A, are relaxations with
the carriers N;=N({—T)).
As an immediate consequence of Theorem 4.6 we obtain )
Corollary 4.7. Convex combinations T=WT,+---+M0T, of relaxations T,
(i=1,...,k) are relaxations too. Their carriers are (ﬂIN(I—T,») denoting by [ the

set of those numbers i with A,;>0.
According to Corollary 4.3 the polynomials
PT) =2 +M T+ +R T Agtr+ -+ 2,=1
of a relaxation 7 are relaxations with the same carrier as 7. Besides operators
U=AT+(1-=0T", 0<i<l

based on a relaxation 7 are selfadjoint relaxations with the same carrier as 7. This
is clear if we remind of Theorem 3.10. Again the assumptions of Theorem 4.6 can be
weakened if the subspaces N; coincide.

Lemma 48. Let A;(i=1,..., k) be operators for which positive numbers A, and
a linear subspace N exist so that
a) A,i+...+;,k=]'
b) A;x=MAx for x¢e N (i=1,...,k),
o) [|A;x |=N||x|| for x¢ N (i=1,...k),

|A;x||<X;llx|| for x¢ N and some je{l,..., k}.
Then T=A,+---+A, is a relaxation with carrier N. )

The proof is simple and quite similar to that of Theorem 4.6.Therefore it is omit-
ted here. Besides there is still another possibility to modify the assumptions of
Theorem 4.6. If ¢) is replaced by

) A x|=\ || x]|| for x¢N; (i=1,...,k),
k
rang{A, x,..., A, x}>1 for x¢N=.ﬂlN,~.

then the assertion holds too. Observing the strict convexity of Hilbert spaces we ob-
tain then

ITx(<ll Ay x|+ -+ Ae xS A x4+ o0+ Ml x =1 ]|

for x¢ N. In a similar way the assumptions of Corollary 4.7 can be modified starting
from nonexpansive operators T, instead of relaxations.

Finally we present a result of another kind. Here the sum of operators turns out
to be a relaxation of one of its summands.

Theorem 49. Let T' be an orthoprojector and A; (i=1,..., k) be operators
satisfying

a) T"Ai=AT =0 for i=1,...,k;

b) [[Ayx+ ...+ A,x||<| x| for x=0.

Then T=T'4+A,+..-+A, is a relaxation of T'.
Proof. By assumption a) we get

T'T=TT+TA+ - +TA=T,
TTI=7-IT1+Al T'+"'+A.T'=T'.
Because of b) it is
| Tx—=T"x||=||Ayx+ -+ Ay x||<| x| for x30.
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Therefore Theorem 3.8 supplies the assertion. ‘
Corollary 4.10. Let T' be an orthoprojector and A be an operator with the
properties
T'A(I—T")=0,
|({—=A)Y([—T" x||<|| x| for x#0.
Then T=I—A+AT’ is a relaxation of T'.
Proof. We put A,=(/—A)/—T'). In view of
T'(—TY=(—-T)T"=T'—-T'=0
we obtain
T'A,=T'(I—-AN{I-T")=T'I-T—T'AI—T")=0,
AT =(I—AN)({I—T"T"=0,
| Ax || =IU=A)U=T")x|<||x | for x0.
Applying Theorem 4.9 for k=1 we see that
T=T'+A,=T"+{—A)([—T)=1—A+AT'

is a relaxation of 7.

For the choice A=A/ Corollary 4.10 shows again that operators 7'=(1—A) /+AT’
with {1—A|< 1 are relaxations called scalar relaxations (see (1.4) and Theorem 3.5).
For 0<A<1 this result follows from Corollary 4.7. Finally we turn to another appli-
cation of Corollary 4.10. For that two Hilbert spaces X, Y are considered.

Corollary 4.11. Let Q be in L(Y). Let A¢L(X,Y) and B¢L(Y, X) be opera-
ors satisfying

ABA=A, BAB=B, (BA)'=BA.
Then 7 =/—BQA is a relaxation of the orthoprojector
T'=[—BA it | B(I—Q)Ax|<| x|l holds for x0.
Proof. For A=/—B(/—Q)A we get
(/—A)Y(I—T")=B(—Q)ABA=B(I—Q) A,
A(U—=T")=(I—-T")—(I—A)(I—T')=BA—-B(I—Q) A= BQA,

T'A(I—T')=(I—BA) BQA=BQA—BABQA=0
and .
[({—=A)Y(U—T")x||=] BUI—Q) Ax||< | x||

if x=0. In view of Corollary 4.10
T=1—-A+AT'=1—-A(/—T")=1—BQA

is a relaxation of 7'=/—BA.

The assumptions in the above statement about A and B mean that A is a right-
orthogonal generalized inverse of B and B is a left-orthogonal generalized inverse of
A respectively (see [3]).

The results of this section can be combined in various ways to get relaxations
again and again starting from a fixed set of relaxations. Above all this procedure is
suitable if we succeed in step by step improving the properties of the relaxations
arising. For instance, we can try to reduce the norms of the relaxations 7" on the
orthogonal complements of their carriers N(/—7). This strategy plays an important
part in the convergence theory of iterative methods with relaxations (see [5], (7], [9]).
Taking a basic set
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T={Tyye. i Tyl

' "l\'

of relaxations we can form segments
(Tn') vy T(II-H)'—-])' 0’=0; (n'{'l)’ >n’

with the properties
T,6F for i=n',...,(n+1)—1,

(n4+1)'—1 k

(i N({=T)=n N(I-T,)=M
i=n’ i=1

holding for all . From these segments we can generate relaxations 7 with the com"
mon carrier M by multiplication, by convex linear combination or also by alterna-
ting use of both principles (see Theorem 4.2, Corollary 4.7). These relaxations 7
can be united in the described manner again to obtain new relaxations with the car-
rier M (see Theorem 4.5, Lemma 4.8).
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